
11. Perturbation Theory 
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11.2.1 Review of interaction picture 
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11.2.3 Fermi’s Golden Rule 

11.1 Time-independent perturbation theory 

Because of the complexity of many physical problems, very few can be solved exactly (unless they involve only 
small Hilbert spaces). In particular, to analyze the interaction of radiation with matter we will need to develop 
approximation methods36 . 

11.1.1 Non-degenerate case 

We have an Hamiltonian 
H = H0 + ǫV 

where we know the eigenvalue of the unperturbed Hamiltonian H0 and we want to solve for the perturbed case
 
H = H0 + ǫV , in terms of an expansion in ǫ (with ǫ varying between 0 and 1). The solution for ǫ → 1 is the desired
 
solution.
 
We assume that we know exactly the energy eigenkets and eigenvalues of H0:
 

(0)H0 |k) = E |k)k 

As H0 is hermitian, its eigenkets form a complete basis 
L |k)(k| = 11. We assume at first that the energy spectrumk 

(0)
is not degenerate (that is, all the E are different, in the next section we will study the degenerate case). Thek 
eigensystem for the total hamiltonian is then 

(H0 + ǫV ) |ϕk)ǫ = Ek(ǫ) |ϕk )ǫ 
where ǫ = 1 is the case we are interested in, but we will solve for a general ǫ as a perturbation in this parameter: 

(0)
) 

(1)
) 

(2)
) 

(0) (1) (2)|ϕk) =
   ϕk + ǫ

   ϕk + ǫ2
   ϕk + . . . , Ek = Ek + ǫEk + ǫ2E + . . .k 

36 A very good treatment of perturbation theory is in Sakurai’s book –J.J. Sakurai “Modern Quantum Mechanics”, Addison­
Wesley (1994), which we follow here. 
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(0)
) 

(0)
where of course ϕ = |k). When ǫ is small, we can in fact approximate the total energy Ek by E . The energyk k 

(0)
shift due to the perturbation is then only ∆k = Ek − E and we can write:k 

(0) (0)
(H0 + ǫV ) |ϕk) = (E + ∆k) |ϕk) → (E −H0) |ϕk ) = (ǫV −∆k) |ϕk)k ǫ k 

Then, we project onto (k|: 
(0)(k| (E −H0) |ϕk) = (k| (ǫV −∆k) |ϕk)k 

(0)
The LHS is zero since (k| H0 |ϕk) = (k|E |ϕk), and from the RHS (k| (ǫV −∆k) |ϕk) = 0 we obtain:k 

(k|V |ϕk)
∆k = ǫ → ∆k = ǫ(k|V |ϕk)(k|ϕk) 

where we set (k|ϕk) = 1 (a non-canonical normalization, although, as we will see, it is approximately valid). 
Using the expansion above, we can replace ∆k by ǫE

1 + ǫ2E2 + . . . and |ϕk ) by its expansion:k k 

(1) (2)
ǫEk 

1 + ǫ2Ek 
2 + · · · = ǫ (k|V (|k)+ ǫ ϕ

) 
+ ǫ2 ϕ

) 
+ . . . )k k 

and equating terms of the same order in ǫ we obtain: 

(n−1)
)

En = (k|V ϕk k 

This is a recipe to find the energy at all orders based only on the knowledge of the eigenstates of lower orders. 
(n−1)

)
?However, the question still remains: how do we find ϕk 

We could think of solving the equation: 

(0)
(E −H0) |ϕk) = (ǫV −∆k) |ϕk) (∗)k 

(0)
for |ϕk), by inverting the operator (E − H0) and again doing an expansion of |ϕk) to equate terms of the samek 
order: 

|k)+ ǫ ϕ
(1)
) 
+ · · · = (E

(0) −H0)
−1(ǫV −∆k)(|k)+ ǫ ϕ

(1)
) 
+ . . . )k k k 

Unfortunately this promising approach is not correct, since the operator (E
(0) − H0)

−1 is not always well defined.k 
(0) (0)

Specifically, there is a singularity for (E −H0)
−1 |k). What we need is to make sure that (E − H0)

−1 is neverk k 
applied to eigenstates of the unperturbed Hamiltonian, that is, we need |ψk) = (ǫV −∆k ) |ϕk)  |k) for any |ϕk).= 
We thus define the projector Pk = 11 − |k) (k| = 

L |h) (h|. Then we can ensure that ∀ |ψ) the projected stateh  =k 

|ψ)′ = Pk |ψ) is such that (k|ψ ′ ) = 0 since this is equal to 

(k|Pk|ψ) = (k|ψ) − (k|k)(k|ψ) = 0 

(0)
Now, using the projector, (E −H0)

−1Pk|ψ) is well defined. We then take the equation (∗) and multiply it by Pkk 
from the left: 

(0)
Pk(E −H0) |ϕk) = Pk(ǫV −∆k) |ϕk) .k 

(0) (0)
Since Pk commutes with H0 (as |k) is an eigenstate of H0) we have Pk(E −H0) |ϕk) = (E −H0)Pk |ϕk) and wek k 
can rewrite the equation as 

(0)
Pk |ϕk) = (E −H0)

−1Pk(ǫV −∆k) |ϕk)k 

We can further simplify this expression, noting that Pk |ϕk) = |ϕk) − |k)(k|ϕk ) = |ϕk) − |k) (since we adopted the 
normalization (k|ϕk) = 1). Finally we obtain: 

(0)|ϕk) = |k)+ (E −H0)
−1Pk (ǫV −∆k) |ϕk) (∗∗)k 
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This equation is now ready to be solved by using the perturbation expansion. To simplify the expression, we define 
the operator Rk 

(0) |h) (h|
Rk = (E −H0)

−1Pk = 
L 

k E0 − E0 
h=k k h 

Now using the expansion 

(1) (1)|k)+ ǫ|ϕ )+ · · · = |k)+ Rkǫ(V − Ek 
1 − ǫEk 

2 − . . . )(|k)+ ǫ|ϕ )+ . . . )k k 

we can solve term by term to obtain: 

1st 
(1)

order: |ϕ ) = Rk(V − Ek 
1) |k) = Rk(V − (k|V |k)) |k) = RkV |k)k 

(where we used the expression for the first order energy and the fact that Rk |k) = 0 by definition). 
We can now calculate the second order energy, since we know the first order eigenstate: 

  

(1) |h) (h|
E2 
k = (k|V |ϕk ) = (k|V RkV |k) = (k|V 

L 
 V |k)

E0 − E0 
k hh=k 

or explicitly 

E2 
L |Vkh|2 

= k E0 − E0 
h=k k h 

Then the second order eigenstate is 

2nd order: ϕ2
 
= RkV RkV |k)k

A. Formal Solution 

We can also find a more formal expression that can yield the solution to all orders. We rewrite Eq. (**) using Rk 
and obtain 

|ϕk) = |k)+ Rk(ǫV −∆k) |ϕk) = RkH1 |ϕk) 
where we defined H1 = (ǫV −∆k). Then by iteration we can write: 

|ϕk) = |k)+ RkH1 (|k)+ RkH1 |ϕk)) = |k)+ RkH1 |k)+ RkH1RkH1 |ϕk) 
and in general: 

|ϕk) = |k)+ RkH1 |k)+ RkH1RkH1 |k)+ · · · + (RkH1)
n |k)+ . . . 

This is just a geometric series, with formal solution: 

|ϕk) = (11−RkH1)
−1 |k) 

B. Normalization 

In deriving the TIPT we introduced a non-canonical normalization (k|ϕk) = 1, which implies that the perturbed 
state |ϕk ) is not normalized. We can then define a properly normalized state as 

|ϕk)|ψk) = v
(ϕk|ϕk ) 

so that (k|ψk) = 1/
v
(ϕk|ϕk ). We can calculate perturbatively the normalization factor (ϕk |ϕk): 

✟ |Vkh|2 (ϕk|ϕk) = (k + ǫϕ1 . . .|k + ǫϕ1 + . . .) = 1 + ǫ(k|ϕ1 
k |ϕ1 .. = 1 + ǫ2 

L
k + 

✟
✟k)+ .. + ǫ2(ϕ1 

k)+ 
(E0 − E0)2 h kh=k 

Notice that the state is correctly normalized up to the second order in ǫ. 
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C. Anti-crossing 

Consider two levels, h and k with energies E0 and E0 and assume that we apply a perturbation V which connectsk h 
only these two states (that is, V is such that (l|V |j) = 0 and it is different than zero only for the transition from h
 
to k: (h|V |k) = 0.)
 
If the perturbation is small, we can ask what are the perturbed state energies.
 
The first order is zero by the choice of V , then we can calculate the second order:
 

(2) 
L |Vkj |2 |Vkh|2 

E = = k E0 − E0 E0 − E0 
j=k k j k h 

and similarly 

(2) 
L |Vhj |2 |Vkh|2 (2)

E = = = −E .h E0 − E0 E0 − E0 k 
j=h h j h k 

This opposite energy shift will be more important (more noticeable) when the energies of the two levels E0 andk 
E0 are close to each other. Indeed, in the absence of the perturbation, the two energy levels would “cross” whenh 
E0 = E0 . If we add the perturbation, however, the two levels are repelled with opposite energy shifts. We describek h
what is happening as an “anti-crossing” of the levels: even as the levels become connected by an interaction, the levels 
never meet (never have the same energy) since each level gets shifted by the same amount in opposite directions. 

D. Example: TLS energy splitting from perturbation 

Consider the Hamiltonian H = ωσz + ǫΩσx. For ǫ = 0 the eigenstates are |k) = {|0), |1)} and eigenvalues E0 = ±ω.k 
We also know how to solve exactly this simple problem by diagonalizing the entire matrix: 

E1,2 = ±
v
ω2 + ǫ2Ω2 , 

|ϕ1) = cos(ϑ/2)|0)+ sin(ϑ/2)|1), |ϕ2) = cos(ϑ/2)|1) − sin(ϑ/2)|0) with ϑ = arctan(ǫΩ/ω) 

For ǫ ≪ 1 we can expand in series these results to find: 

ǫ2Ω2 

E1,2 ≈ ±(ω + + . . . )
2ω 

ϑ ǫΩ ϑ ǫΩ |ϕ1) ≈ |0)+ |1) = |0)+ |1) |ϕ2) ≈ |1) − |0) = |1) − |0)
2 2ω 2 2ω 

As an exercise, we can find as well the results of TIPT. First we find that the first order energy shift is zero, since 
E1 = (k|V |k) = (0|(Ωσx)|0) = 0 (and same for (1|(Ωσx)|1)). Then we can calculate the first order eigenstate:k 

1 Ω 
ϕ1 = |0)+ (E1

0 −H0)
−1P1V |0) = |0)+ [ω(11− σz )]

−1|1)(1|ǫΩσx|0) = |0)+ ǫΩ|1)(1|σx|0) = |0)+ ǫ |1)1 2ω 2ω 

ϕ1 |V12 |2 (ǫΩ)2 

similarly, we find = |1) − ǫ Ω |0). Finally, the second order energy shift is E1
2 = = in agreement2 2ω E0−E0 2ω1 2 

with the result from the series expansion.
 
We can also look at the level anti-crossing: If we vary the energy ω around zero, the two energy levels cross each
 
other.
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Eigenvalues 

Ω 

Fig. 18: Level anticrossing: Eigenvalues of the Hamiltonian H = ωσz + ǫΩσx as a function of ω. Dashed lines: Ω = 0. Red 
lines: Ω � 0 showing the anticrossing.= 

11.1.2 Degenerate case 

If there are degenerate (or quasi-degenerate) eigenvalues of the unperturbed Hamiltonian H0, the expansion used 
above is no longer valid. There are two problems: 

1. If |k ′ ), |k ′′ ), ... have the same eigenvalue, we can choose any combination of them as the unperturbed eigenket. 
But then, if we were to find the perturbed eigenket |ψk), to which state would this go to when ǫ → 0? 

2. The term Rk = (0) 
Pk can be singular for the degenerate eigenvalues. 

Ek −H0 

Assume there is a d-fold degeneracy of the eigenvalue Ed, with the unperturbed eigenkets {|ki)} forming a subspace 
Hd. We can then define the projectors Qd = 

L |ki)(ki| and Pd = 11−Qd. These projectors also define subspaceski∈Hd 

of the total Hilbert space H that we will call Hd (spanned by Qd) and Hd̄ (spanned by Pd). 
Notice that because of their nature of projectors, we have the following identities: 

P 2 = Pd, Q2 = Qd, PdQd = QdPd = 0 and Pd + Qd = 11.d d 

We then rewrite the eigenvalue equation as: 

(H0 + ǫV ) |ϕk) = Ek |ϕk ) → H0(Qd + Pd) |ϕk)+ ǫV (Qd + Pd) |ϕk) = Ek(Qd + Pd) |ϕk) 

→ (Qd + Pd)H0 |ϕk )+ ǫV (Qd + Pd) |ϕk) = Ek (Qd + Pd) |ϕk) 
where we used the fact that [H0, Qd] = [H0, Pd] = 0 since the projectors are diagonal in the Hamiltonian basis. We 
then multiply from the left by Qd and Pd, obtaining 2 equations: 

1. Pd × [(Qd + Pd)H0 |ϕk )+ ǫV (Qd + Pd) |ϕk)] = Pd × (Ek(Qd + Pd) |ϕk)) 

→ H0Pd |ϕk )+ ǫPdV (Qd + Pd) |ϕk) = Ek Pd |ϕk ) 
2. Qd × [(Qd + Pd)H0 |ϕk )+ ǫV (Qd + Pd) |ϕk)] = Qd × (Ek (Qd + Pd) |ϕk)) 

→ H0Qd |ϕk)+ ǫQdV (Qd + Pd) |ϕk ) = EkQd |ϕk) 
and we simplify the notation by setting |ψk) = Pd |ϕk) and |χk) = Qd |ϕk) 

H0 |ψk)+ ǫPdV (|χk)+ |ψk)) = Ek |ψk)
 

H0 |χk)+ ǫQdV (|χk)+ |ψk)) = Ek |χk)
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which gives a set of coupled equations in |ψk) and |χk): 

1. ǫPdV |χk) = (Ek −H0 − ǫPdV Pd) |ψk) 

2. ǫQdV |ψk) = (Ek −H0 − ǫQdV Qd) |χk) 
Now (Ek −H0 − ǫPdV Pd)

−1 is finally well defined in the Pd subspace, so that we can solve for |ψk) from (1.): 

|ψk) = ǫPd(Ek −H0 − ǫPdV Pd)
−1PdV |χk) 

and by inserting this in (2.) we find 

(Ek −H0 − ǫQdV Qd) |χk) = ǫ2QdV Pd(Ek −H0 − ǫPdV Pd)
−1PdV |χk) . 

If we keep only the first order in ǫ in this equation we have: 

[(Ek − Ed)− ǫQdV Qd] |χk) = 0 

which is an equation defined on the subspace Hd only. 
We now call Ud = QdV Qd the perturbation Hamiltonian in the Hd space and ∆k = (Ek − Ed)11d, to get: 

(∆k − ǫUd) |χk) = 0 

Often it is possible to just diagonalize Ud (if the degenerate subspace is small enough, for example for a simple double 
degeneracy) and notice that of course ∆k is already diagonal. Otherwise one can apply perturbation theory to this 

(0) (0)(0)
) ) )

subspace. Then we will have found some (exact or approximate) eigenstates of Ud, k , s.t. Ud k = ui ki i i 

(0)
) 

(0)
)

and H0 k = Ed k , ∀i. Thus, this step sets what unperturbed eigenstates we should choose in the degeneratei i 

subspace, hence solving the first issue of degenerate perturbation theory. 
We now want to look at terms ∝ ǫ2 in 

✘(Ek −H0 − ǫUd) |χk) = ǫPdV Pd)
−1PdV |χk)ǫ2QdV Pd(Ek −H0 −✘✘✘

where we neglected terms higher than second order. Rearranging the terms, we have: 

Ek |χk) = [H0 + ǫUd + ǫ2QdV Pd(Ek −H0)
−1PdV ] |χk) → (H̃0 + Ṽ ) |χk) = Ek |χk) 

with 
H̃0 = H0 + ǫUd Ṽ = ǫQdV Pd(Ek −H0)

−1PdV Qd 
)

If there are no degeneracies left in H̃0, we can solve this problem by TIPT and find χ
(n) 

.k 

For example, to first order, we have  
k
(0)| ˜ (0)

)
V |kj i(1)

) 
(0)
)

χ = 
L 

kk,i j 
j=i

ǫ(ui − uj ) 

(0) (0)
and using the explicit form of the matrix element Ṽij = (kj |Ṽ |k ),i 

 
k
(0) 

V |h) (h|V k
(0)
)

j i 
Ṽij =

 
k
(0) 

ǫ2V Pd(Ed 
0 −H0)

−1PdV k
(0)
) 
= ǫ2 

L 
j i (0) (0)

E − Eh/∈Hd d h 

we obtain: 
(0) (0) 

(1) (kj |V |h) (h|V |k ) (0)
) 

i 
)

χ = ǫ 
L 

kk,i (0) (0) j(ui − uj ) E − Ej=i d h 
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Finally, we need to add |χ) and |ψ) to find the total vector: 

ϕ
(1) 

=
L

) 

Example: Degenerate TLS 

Consider the Hamiltonian H = ωσz + ǫΩσx. We already solved this Hamiltonian, both directly and with TIPT. 
Now consider the case ω ≈ 0 and a slightly modified Hamiltonian: 

H = (ω0 + ω)|0)(0|+ (ω0 − ω)|1)(1|+ ǫΩσx = ω011 + ωσz + ǫΩσx. 

1We could solve exactly the system for ω = 0, simply finding E0,1 = ω0 ± ǫΩ and |ϕ)0,1 = |±) = √ (|0) ± |1)). We 
2

can also apply TIPT.
 
However the two eigenstates |0), |1) are (quasi-)degenerate thus we need to apply degenerate perturbation theory. In
 
particular, any basis arising from a rotation of these two basis states could be a priori a good basis, so we need first
 
to obtain the correct zeroth order eigenvectors. In this very simple case we have Hd = H (the total Hilbert space)
 
and H ̄ = 0, or in other words, Qd = 11, Pd = 0. We first need to define an equation in the degenerate subspace only:
d 

(∆k − ǫUd) |χk) = 0 

where Ud = QdV Qd. Here we have: Ud = V = Ωσx. Thus we obtain the correct zeroth order eigenvectors from 
diagonalizing this Hamiltonian. Not surprisingly, they are: 





 

(0) (0)
k V |h) k

(0)(h|V |ki) |h)+ ǫ 
L j 

k
) (h|V i

E0 (0) (ui − uj ) 
j (0) (0)− E Ed h j=i d

)
k − Ehh/∈Hd 






)(0)(k |V |h)j|h)+ ǫ 

L 

(ui −
j=i

) L (h|V |ki)
(0)

E0 

(1) (0)
ϕ k= jk uj )− Ed hh/∈Hd 

ϕ
(0) 
0,1

)
= 

1 |±) = √ (|0) ± |1)). 
2

with eigenvalues: E0,1 = ω0 ± ǫΩ. We can now consider higher orders, from the equation: 

˜(H0 + Ṽ ) |χk) = Ek |χk) 

with H̃0 = ω011 + ǫΩσx and Ṽ = 0. Thus in this case, there are no higher orders and we solved the problem. 

Example: Spin-1 system 

We consider a spin-1 system (that is, a spin system with S=1 defined in a 3-dimensional Hilbert space). The matrix 
representation for the angular momentum operators Sx and Sz in this Hilbert space are: 


 

0 1 0 
1 0 1 


 , Sz = 


 


 

1 0 0 
0 0 0 

1 √Sx = 
2 −10 1 0 0 0 

The Hamiltonian of the system is H = H0 + ǫV with 

= ∆S2; V = Sx + SzH0 z 

Given that 

S2 
z 


 

1 0 0

= 0 0 0 

0 0 1 
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The matrix representation of the total Hamiltonian is : 

ǫ∆ + ǫ √ 0 
2 

ǫ ǫ√ 0 √H = 



 




2 2 

ǫ0 √ ∆ − ǫ 
2 

Possible eigenstates of the unperturbed Hamiltonian are |+1) , |0), |−1): 
 

 

 



 

 

 





 



 , 
1 0 0 

0|+1) 0 |0) 1 |−1)= = =, , 
0 0 1 

and |−1) is a valid eigenstate, for example 

1

 

with energies +∆, 0, +∆ respectively. However, any combination of |+1)
we could have chosen: 

 





 

11 1 √ √|+1) 0 |−1) 0= =, 
2 2 −11 

This is the case because the two eigenstates are degenerate. So how do we choose which are the correct eigenstates
 
to zeroth order37? We need to first consider the total Hamiltonian in the degenerate subspace.
 
The degenerate subspace is the subspace of the total Hilbert space H spanned by the basis |+1) , |−1); we can call
 
this subspace HQ. We can obtain the Hamiltonian in this subspace by using the projector operator Q: HQ = QHQ,
 
with Q = |+1)(+1|+ |−1)(−1| = S2 . Then:
z 

HQ = Q(∆S2 + ǫ(Sz + Sx))Q = ∆S2 + ǫSzz z 

(Notice this can be obtained by direct matrix multiplication or multiplying the operators). In matrix form: 

HQ = 



 



 → HQ = 

( 
∆ + ǫ 
0 

0 
∆ − ǫ

)∆ + ǫ 0 0 
0 0 0 
0 0 ∆ − ǫ 

where in the last line I represented the matrix in the 2-dimensional subpsace HQ. We can now easily see that the 
correct eigenvectors for the unperturbed Hamiltonian were the original |+1) and |−1) after all. From the Hamiltonian 
in the HQ subspace we can also calculate the first order correction to the energy for the states in the degenerate 

(1) (0) (1) (0)
subspace. These are just E − E +ǫ and E − E −ǫ.+1 +1 = −1 −1 = 

(1)
Now we want to calculate the first order correction to the eigenstates |±1). This will have two contributions: |ψ) = ±1 

(1) (1)
Q|ψ)±1 + P |ψ) where P = 11 −Q = |0) (0| is the complementary projector to Q. We first calculate the first term±1 
in the following way. We redefine an unperturbed Hamiltonian in the subspace HQ: 

H̃0 = HQ = QHQ = ∆S2 + ǫSzz 

and the perturbation in the same subspace is (following Sakurai): 

ǫ
Ṽ = VQ = ǫQ(V P (∆ −H0)

−1PV )Q = ǫQ 
�
(Sz + Sx) |0) (0| (∆ |0) (0|)−1 |0) (0| (Sz + Sx)

� 
Q = QSxPSxQ

∆ 

In matrix form: 
 


 → ǫ 

( 
1 1

)
ǫ1 0 1 

0 0 0 
ǫ 

VQ = VQ = = (11 + σx)1 12∆ 2∆ 2∆1 0 1 

Now the perturbed eigenstates can be calculated as: 

L (h|VQ |k)
(1) 

(1)
Q|ψ) = |k)+ ǫk |h)

(1)
E − Eh∈HQ=k k h 

37 Here by correct eigenstates I means the eigenstates to which the eigenstates of the total Hamiltonian will tend to when 
ǫ → 0 
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In our case: 

(1) (−1|VQ |+1) ǫ (−1| (11 + σx) |+1) ǫ 
Q|ψ) |+1)+ ǫ |−1) = |+1)+ ǫ |−1) = |+1)+ |−1) ,+1 = 

E
(1) − E

(1) 2∆ 2ǫ 4∆ 
+1 −1 

ǫ(1)
Qψ−1 = |−1) − |1)

4∆ 
(1)

In order to calculate Pψ we can just use the usual formula for non-degenerate perturbation theory, but summing±1 
only over the states outside HQ. Here there’s only one of them |0), so : 

(1) (0|V |±1) ǫ 
P |ψ) = ǫ |0) = √ |0)±1 E±1 − E0 2∆ 

Finally, the eigenstates to first order are: 

ǫ ǫ(1)|ψ+1) = |+1)+ |−1)+ √ |0)
4∆ 2∆ 

and ǫ ǫ(1)|ψ−1) = |−1) − |1)+ √ |0)
4∆ 2∆ 

(2) | (h|V |±1) |2 
The energy shift to second order is calculated from ∆ = 

L 
:± (0)

∆ − Eh/∈HQ h 

(2) |(0|V |+1) |2 ǫ2 
∆ = +1 = 

∆ 2∆ 

and 
(2) |(0|V |−1) |2 ǫ2 

∆ = = −1 ∆ 2∆ 

To calculate the perturbation expansion for |0) and its energy, we use non-degenerate perturbation theory, to find: 

(1)
∆ (0|V |0) = 0+1 = 

(1) 

((+1|V |0) (−1|V |0) ) 
ǫ |+1)+ |−1)|ψ+1) = |0)+ ǫ |+1)+ |−1) = − √ −∆ −∆ ∆ 2 

(2) − ǫ2 
and ∆ = .0 ∆ 

11.1.3 The Stark effect 

We analyze the interaction of a hydrogen atom with a (classical) electric field, treated as a perturbation38. Depending 
on the hydrogen’s state, we will need to use TIPT or degenerate TIPT, to find either a quadratic or linear (in the 
field) shift of the energy. The shift in energy is usually called Stark shift or Stark effect and it is the electric analogue 
of the Zeeman effect, where the energy level is split into several components due to the presence of a magnetic field. 
Measurements of the Stark effect under high field strengths confirmed the correctness of the quantum theory over 
the Bohr model. 
Suppose that a hydrogen atom is subject to a uniform external electric field, of magnitude |E|, directed along the 
z-axis. The Hamiltonian of the system can be split into two parts. Namely, the unperturbed Hamiltonian, 

2 2p e
H0 = − ,

2me 4π ǫ0 r 

38 This section follows Prof. Fitzpatrick online lectures 
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and the perturbing Hamiltonian 
H1 = e |E| z. 

Note that the electron spin is irrelevant to this problem (since the spin operators all commute with H1), so we can 
ignore the spin degrees of freedom of the system. Hence, the energy eigenstates of the unperturbed Hamiltonian are 
characterized by three quantum numbers–the radial quantum number n, and the two angular quantum numbers l 
and m. Let us denote these states as the |nlm), and let their corresponding energy eigenvalues be the Enlm. We use 
TIPT to calculate the energy shift to first and second order. 

A. The quadratic Stark effect 

We first want to study the problem using non-degenerate perturbation theory, thus assuming that the unperturbed 
states are non-degenerate. According to TIPT, the change in energy of the eigenstate characterized by the quantum 
numbers n, l, m in the presence of a small electric field is given by 

|(n, l, m|z|n ′ , l ′ ,m ′ )|2 
∆Enlm = e |E| (n, l, m|z|n, l, m) + e 2 |E|2 

L 
. 

Enlm − En ′ l′ m ′ 
n ′ ,l′ ,m ′ =n,l,m 

This energy-shift is known as the Stark effect. The sum on the right-hand side of the above equation seems very 
complicated. However, it turns out that most of the terms in this sum are zero. This follows because the matrix 

′ elements (n, l, m|z|n ′ , l ′ ,m ′ ) are zero for virtually all choices of the two sets of quantum number n, l, m and n ′ , l ′ ,m .
 
Let us try to find a set of rules which determine when these matrix elements are non-zero. These rules are usually
 
referred to as the selection rules for the problem in hand.
 
Now, since [Lz, z] = 0, it follows that
 

(n, l, m|[Lz, z]|n ′ , l ′ ,m ′ ) = (n, l, m|Lz z − z Lz|n ′ , l ′ ,m ′ ) = l (m −m ′ ) (n, l, m|z|n ′ , l ′ ,m ′ ) = 0. 

Hence, one of the selection rules is that the matrix element (n, l, m|z|n ′ , l ′ ,m ′ ) is zero unless 
′ m = m. 

The selection rule for l can be similarly calculated from properties of the total angular momentum L2 and its 
commutator with z. We obtain that the matrix element is zero unless 

l ′ = l ± 1. 

Application of these selection rules to the perturbation equation shows that the linear (first order) term is zero, while 
the second order term yields 

L |(n, l, m|z|n ′ , l ′ ,m)|2 
∆Enlm = e 2 |E|2 . 

Enlm − En ′ l′ m 
n ′ ,l′ =l±1 

Only those terms which vary quadratically with the field-strength have survived. Hence, this type of energy-shift of
 
an atomic state in the presence of a small electric field is known as the quadratic Stark effect.
 
Now, the electric polarizability of an atom is defined in terms of the energy-shift of the atomic state as follows:
 

1 
∆E = − α |E|2 . 

2 

Hence, we can write 
L |(n, l, m|z|n ′ , l ′ ,m)|2 

αnlm = 2 e 2 . 
En ′ l′ m − Enlm 

n ′ ,l′ =l±1 

Although written for a general state, the equations above assume there is no degeneracy of the unperturbed eigen­
values. However, the unperturbed eigenstates of a hydrogen atom have energies which only depend on the radial 
quantum number n, thus they have high (and increasing with n) order of degeneracy. We can then only apply the 
above results to the n = 1 eigenstate (since for n ≥ 1 there will be coupling to degenerate eigenstates with the same 
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value of n but different values of l). Thus, according to non-degenerate perturbation theory, the polarizability of the 
ground-state (i.e., n = 1) of a hydrogen atom is given by 

2 
L |(1, 0, 0|z|n, 1, 0)|2 

α = 2 e . 
En − E1 n>1 

Here, we have made use of the fact that En10 = En00 = En.
 
The sum in the above expression can be evaluated approximately by noting that
 

2e
En = − ,

8π ǫ0 a0 n2

4π ǫ0 �
2 

where a0 = is the Bohr radius. Hence, we can write me e2 

23 e
En − E1 ≥ E2 − E1 = ,

8π ǫ0 a0 

which implies that the polarizability is 

16 
α < 4π ǫ0 a0 

L 
|(1, 0, 0|z|n, 1, 0)|2 . 

3 
n>1

1However, thanks to the selection rules we have, 
L |(1, 0, 0|z|n, 1, 0)|2 = (1, 0, 0|z2|1, 0, 0) = (1, 0, 0|r2|1, 0, 0),n>1 3 

where we have made use of the fact the the ground-state of hydrogen is spherically symmetric. Finally, from 
2(1, 0, 0|r2|1, 0, 0) = 3 a0 we conclude that 

16 3 3α < 4π ǫ0 a0 ≃ 5.3 4π ǫ0 a .03 

The exact result (which can be obtained by solving Schrdinger’s equation in parabolic coordinates) is 

9 3 3α = 4π ǫ0 a0 = 4.5 4π ǫ0 a .02 

B. The linear Stark effect 

We now examine the effect of an electric field on the excited energy levels n ≥ 1 of a hydrogen atom. For instance, 
consider the n = 2 states. There is a single l = 0 state, usually referred to as 2s, and three l = 1 states (with 
m = −1, 0, 1 ), usually referred to as 2p. All of these states possess the same energy, E2 = −e2/(32πǫ0a0). Because 
of the degeneracy, the treatment above is no longer valid and in order to apply perturbation theory, we have to recur 
to degenerate perturbation theory. 
We first need to Ud = QdV Qd, where Qd is the projector obtained from the degenerate 2s and 2p states (that is, the 
operator that project into the degenerate subspace). This operator is, 

 
0 (2, 0, 0|z|2, 1, 0) 0 0 

 

Ud = e |E| (2, 1, 0|z|2, 0, 0) 0 0 0  → 
( 

0 (2, 0, 0|z|2, 1, 0)
) 

, 0 0 0 0  (2, 1, 0|z|2, 0, 0) 0 
0 0 0 0 

where the rows and columns correspond to the |2, 0, 0), |2, 1, 0), |2, 1, 1) and |2, 1, −1) states, respectively and in the 
second step we reduce the operator to the degenerate subspace only. To simplify the matrix we used the selection 
rules, which tell us that the matrix element of between two hydrogen atom states is zero unless the states possess the 
same n quantum number, and l quantum numbers which differ by unity. It is easily demonstrated, from the exact 
forms of the 2s and 2p wave-functions, that 

(2, 0, 0|z|2, 1, 0) = (2, 1, 0|z|2, 0, 0) = 3 a0. 
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It can be seen, by inspection, that the eigenvalues of Ud are u1 = 3 e a0 |E|, u2 = −3 e a0 |E|, with corresponding 
eigenvectors 

(0) 
) |2, 0, 0)+ |2, 1, 0) 1 

( 
1 
)

k1 = √ = √ ,
12 2 

(0) 
) |2, 0, 0) − |2, 1, 0) 1 

( 
1 

)
k2 = √ = √ −12 2 

In the absence of an electric field, all of these states possess the same energy, E2. The first-order energy shifts induced 
by an electric field are given by 

∆E1 = +3 e a0 |E|, 
∆E2 = −3 e a0 |E|, 

Thus, the energies of states 1 and 2 are shifted upwards and downwards, respectively, by an amount 3 e a0 |E| in the 
presence of an electric field. States 1 and 2 are orthogonal linear combinations of the original 2s and 2p(m=0) states. 
Note that the energy shifts are linear in the electric field-strength, so this is a much larger effect that the quadratic 
effect described in the previous section. 
The energies of states 2p(m=1) and 2p(m=-1) (which are outside the degenerate subspace) are not affected to first­
order (as we already saw above for the non-degenerate case). Of course, to second-order the energies of these states are 
shifted by an amount which depends on the square of the electric field-strength, the quadratic shift found previously. 
Note that the linear Stark effect depends crucially on the degeneracy of the 2s and 2p states. This degeneracy is a 
special property of a pure Coulomb potential, and, therefore, only applies to a hydrogen atom. Thus, alkali metal 
atoms do not exhibit the linear Stark effect. 
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11.2 Time-dependent perturbation theory 

11.2.1 Review of interaction picture 

When first studying the time evolution of QM systems, one approach was to separate the Hamiltonian much in the 
same way we did above for TIPT. We wrote (see Section 5.2): 

H = H0 + V (t) 

where H0 is a ”solvable” Hamiltonian of which we already know the eigen-decomposition, 

H0|k) = Ek 
0|k), 

−iH0t)(so that it is easy to calculate e.g. U0 = e and V (t) is a perturbation that drives an interesting (although 
unknown) dynamics. Here we even allow for the possibility that V is time-dependent. For any state |ψ) = 

L
k ck(0)|k)

−iE0 
the evolution can be written as |ψ) = 

L
k ck(t)e kt|k). This correspond to explicitly writing down the evolution due 

to the known Hamiltonian (if H = H0 then we would have ck(t) = ck(0) and the evolution would be given by only the 
phase factors). In other words, if we want to compare the state evolution with the initial eigenstates, by calculating 
the overlap |(k|ψ(t))|2, we would be really interested only in the dynamics driven by V since |(k|ψ(t))|2 = |ck(t)|2 
(while E0 do not play a role).k 
We define states in the interaction picture by 

|ψ)I = U0(t)
†|ψ) = e iH0 t|ψ) 

Similarly we define the corresponding interaction picture operators as: 

AI (t) = U † 
0AU0 → VI (t) = U † 

0V U0 

We can now derive the differential equation governing the evolution of the state in the interaction picture, starting 
from Schrödinger equation. 

i 
∂|ψ)I 

∂t 
= i 

∂(U † 
0 |ψ)) 
∂t 

† ∂|ψ)
∂t 

∂U † 
0 

0 |ψ)+ Ui( )= 
∂t 

Inserting ∂tU0 = iH0U0 and i∂t|ψ) = H0|ψ), we obtain 

i 
∂|ψ)
∂t 

= U † 
0H0|ψ) − U † 

0
† 
0(H0 + V )|ψ) V |ψ).U= 

Inserting the identity 11 = U0U
† 
0 , we obtain = U † 

0V U0U
† 
0 |ψ)= VI |ψ)I : 

∂|ψ)I
i = VI (t)|ψ)I
∂t 

This is a Schrödinger -like equation for the vector in the interaction picture, evolving under the action of the operator 
VI (t) only. 

11.2.2 Dyson series 

Besides expressing the Schrödinger equation in the interaction picture, we can also write the equation for the prop­
agator that describes the evolution of the state: 

dUI 
= −iVI UI , |ψ(t)) = UI (t) |ψI (0))Id t 
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Since VI (t) is time-dependent, we can only write formal solutions for UI . One expression is given by the Dyson series. 
The differential equation is equivalent to the integral equation 

t1
UI (t) = 11− i VI (t ′ )UI (t ′ )dt ′ 

0 

By iterating, we can find a formal solution to this equation : 

′ t t t1 1 1
UI (t) = 11− i dt ′ VI (t ′ ) + (−i)2 dt ′ dt ′ VI (t ′ )VI (t ′′ ) + . . . 

0 0 0 

(n−1)t t1 1
+(−i)n dt ′ . . . dt(n)VI (t ′ ) . . . VI (t

(n)) + . . . 
0 0 

This is the Dyson series. 

11.2.3 Fermi’s Golden Rule 

The problem that we try to solve via TDPT is to calculate the transition probability from an initial state to a final 
state. Consider an initial state |i) which is an eigenstate of H0 (H0 |i) = Ei |i)). Then in the interaction picture we 
have the evolution 

|i(t)) = UI (t) |i) = 
L 

ck(t)|k), with ck(t) = (k|UI (t) |i)I
 
k
 

We can insert the perturbation expansion for UI (t) to obtain an expansion for ck(t): 

′ t 
 

t t t 
 

′′ ) +ck(t) = (k| 11− i 
1 

VI (t 
′ )UI (t 

′ )dt ′ |i) = (k| 11− i 
1 

dt ′ VI (t 
′ ) + (−i)2 

1 
dt ′ 

1 
dt ′ VI (t 

′ )VI (t . . . |i)
0 0 0 0 

In the expansion we will obtain terms such as (k|VI (t) |i) that we can simplify since: 

(k|VI (t) |i) = (k| (U0
†V (t)U0) |i) = (U0k|V (t) |U0i) = (k| e iωktV (t)e −iωit |i) = (k|V |i) e iωkit = Vki(t)e iωkit 

where we defined ωj = Ej /l and ωki = ωk − ωi. Using these relationships and the series expansion we obtain: 
(0)
c (t) = (k|11 |i) = δkik 

′(1) iωkitc (t) = −i 
J t(k|VI (t ′ ) |i) dt ′ = −i 

J t 
Vki(t ′ )e dt ′ k 0 0 

′ ′ ′′(2)
c (t) = −

J t 
dt ′ 

J t 
dt ′′ Vkh(t ′ )Vhi(t ′′ )eiωkht eiωhit 

k 0 0 

From this expansion we can calculate the transition probability as P (i → k) = |ck(t)|2 . 

We first consider the case where the perturbation V is time-independent and it is turned on at the time t = 0. Then 
we have 

t 
iωkit iωkit)

(1) 
1 

Vki Vki 
( 
ωkit 

)
ck (t) = −iVki e 

′ 

dt ′ = (1− e = −2i e iωkit/2 sin
0 ωki ωki 2 

Then to first order perturbation, the transition probability is 

4|Vki|2 
( 
ωkit 

)
P (i → k) = sin2 

ω2 2ki 

We can plot this transition probability as a function of the energy separation ωki between the two states. We would 
expect that if the separation in energy is smaller, it will be easier to make the transition. This is indeed the case, 
since P has the shape of a sinc function square. 
Notice that the peak height is proportional to t2, while the zeros appear at 2kπ/t, that is, the peak width is 
proportional to 1/t (the other peaks are quite small). This means that the probability is significantly different than 
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Fig. 19: Transition probability 

zero only for ωkit ≤ 2π. In terms of energy, we have that ∆t∆E ∼ l (where we defined ∆t as the duration of the 
interaction), or in other words, we can have a change of energy in the system only at short times, while at long times 
we require quasi-conservation of energy. Consider the limit of the sinc function: 

sin(ωt/2) 
lim = πδ(ω) 
t→∞ ω 

Then, from f(x)δ(x) = f(0) and sinc(0) = 1, we obtain 

( 
sin(ωt/2) 

)2 
sin(ωt/2) sin(ωt/2) sin(ωt/2) 

( 
sin(ωt/2) 

) 
t πt 

lim = lim = πδ(ω) = πδ(ω) = δ(ω) 
t→∞ ω ω t→∞ ω ω ωt/2 2 2 

We have then found the transition probability at long time: 

t→∞ πt 
P (i → k) → δ(ω) 4|Vki|2 ,

2 

which confirms the fact that in the long-time limit we need to enforce energy conservation. A better defined quantity 
is the rate of transition: 

W (i → k) = 2π |Vki|2δ(ω). 
(1) J t iωkit (1) 

Notice that for ωki = 0, from c (t) = e
′ 

dt ′ we obtain c (t) = −iVkit and thus the probability k −iVki 0 k 
|ck(t)|2 = |Vki|2t2. There is a quadratic dependence on time for a single final state. 
Now we consider a continuum of final states, all with energy Ekf ≈ Ei. Then the probability of a transition to this 
continuum is given by the sum of the probability for each individual state: Pf = 

L |ck|2 → 
J 
dEk ρ(Ek)|ck|2, where k 

we defined the density of states ρ(Ek ), such that ρ(Ek )dEk is the number of states with energy between Ek and 
Ek + dEk. We can then rewrite the probability as 

1 ( 
(E − Ei)t 

) |Vki|2 
Pi→f = 4 dEρ(E) sin2 

2 (E − Ei)2 

Using the limit of the sinc function, we find 

1 
πt |Vki|2 

Pi→f = 4 dEρ(E)δ(E − Ei)
2 (E − Ei)2 

Since all the states are in a neighborhood of the energy, we expect |Vki|2 ≈ |V̄ki|2 over the range of energy of interest. 
Thus by evaluating the integral (with the delta function) we obtain the transition probability: 

Pi→f = 2|Vki|2πtρ(Ek)|Ek≈Ei 
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Similarly, we can calculate the transition rate to a continuum of states. From the expression for a single state, 
2πWi→k = |Vki|2δ(Ek −Ei), we integrate over all final energies, Wi→f = 

J 
Wi→k ρ(Ek )dEk, where f is the continuum 

of states k such that Ek ≈ Ei. Then we obtain the transition rate: 

2π 
W = |Vki|2ρ(Ek)|Ek≈Ei

l 

This is Fermi’s Golden Rule. 

Virtual Transitions 

If the matrix element of the interaction connecting two given state is zero, we have seen from the expression above 
that no transition is possible, to first order. 

(2) 
However, consider c (t). This is given by k 

−
L ′ 

dt ′′ i 
Lt t t 

′ ′′ ′ ′(2) 
1 1 

iωkht iωhit VkhVhi 
1 

iωkit iωkht c (t) = VkhVhi dt ′ e e = dt ′ (e − e )k 
h h same as before ≈00 0 ωki 0 

� �� � � �� � 

If Eh = Ek, Ei, the second term oscillates rapidly and goes to zero. Finally we have: 

2 
2π VkhVhi 

Wi→k = Vki + 
L 

δ(Ek − Ei)
l ωki 

h 

or for a continuum 
2 

2π VkhVhi 
Wi→f = 

L 
ρ(Ek)|Ek≈EiVki + 

l ωki 
h 

Notice that even if Vik = 0, we can still have a transition to k, via virtual transitions to intermediate states, which 
are connected to the two relevant levels. 
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