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PRA Synopsis

Figure removed due to copyright restrictions.
Futron Corp., International Space Station PRA, Dec. 2000
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NPP End States

• Various states of degradation of the reactor core.
• Release of radioactivity from the containment.
• Individual risk.
• Numbers of early and latent deaths.
• Number of injuries.
• Land contamination.
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The Master Logic Diagram (MLD)

• Developed to identify Initiating Events in a PRA.

• Hierarchical depiction of ways in which system 
perturbations can occur.

• Good check for completeness.
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MLD Development

• Begin with a top event that is an end state.

• The top levels are typically functional.

• Develop into lower levels of subsystem and component 
failures.

• Stop when every level below the stopping level has the 
same consequence as the level above it.
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Nuclear Power Plant MLD
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NPP: Initiating Events

• Transients
– Loss of offsite power
– Turbine trip
– Others

• Loss-of-coolant accidents (LOCAs)
– Small LOCA
– Medium LOCA
– Large LOCA
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ILLUSTRATION EVENT TREE: Station Blackout 
Sequences

LOSP DGs
Seal 

LOCA EFW EP Rec. Cont.
END 

STATE

0.07 per yr 0.993 success
0.007 0 success

success
core melt
core melt w/ release

1 0.95 0.99 success
0.01 core melt 4.70E-06

core melt w/ release
0.05 0.94 success

0.06 core melt 1.50E-06
core melt w/ release

From:  K. Kiper, MIT Lecture, 2006 Courtesy of K. Kiper.  Used with permission.
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LOSP Distribution
Epistemic Uncertainties
5th 0.005/yr (200 yr)
Median 0.040/yr (25 yr)
Mean 0.070/yr (14 yr)
95th 0.200/yr (  5 yr)

From:  K. Kiper, MIT Lecture, 2006 Courtesy of K. Kiper.  Used with permission.
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Offsite Power Recovery Curves
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From:  K. Kiper, MIT Lecture, 2006 Courtesy of K. Kiper.  Used with permission.
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STATION BLACKOUT EVENT TREE

Courtesy of U.S. NRC.
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NPP:  Loss-of-offsite-power event tree
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Human Performance

• The operators must decide to perform feed & bleed.

• Water is “fed” into the reactor vessel by the high-
pressure system and is “bled” out through relief valves 
into the containment.  Very costly to clean up.

• Must be initiated within about 30 minutes of losing 
secondary cooling (a thermal-hydraulic calculation).



Department of Nuclear Science and Engineering 14

J. Rasmussen’s Categories of Behavior

• Skill-based behavior: Performance during acts that, after a statement 
of intention, take place without conscious control as smooth, 
automated, and highly integrated patterns of behavior.

• Rule-based behavior: Performance is consciously controlled by a 
stored rule or procedure.

• Knowledge-based behavior: Performance during unfamiliar situations 
for which no rules for control are available.
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Reason’s Categories

Unsafe acts
– Unintended action

• Slip
• Lapse
• Mistake

– Intended violation
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Latent conditions

• Weaknesses that exist within a system that create contexts for 
human error beyond the scope of individual psychology.

• They have been found to be significant contributors to incidents.

• Incidents are usually a combination of hardware failures and 
human errors (latent and active).
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Reason’s model
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J. Reason, Human Error, Cambridge University Press, 1990
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Pre-IE (“routine”) actions

Median EF
Errors of commission 3x10-3 3

Errors of omission 10-3 5

A.D. Swain and H.E. Guttmann,  Handbook of Human Reliability Analysis with Emphasis on 
Nuclear Power Plant Applications,  Report NUREG/CR-1278, US Nuclear Regulatory 
Commission, 1983.
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Post-IE errors

• Models still being developed.

• Typically, they include detailed task analyses, identification of 
performance shaping factors (PSFs), and the subjective assessment of 
probabilities.

• PSFs: System design, facility culture, organizational factors, 
stress level, others.
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NUREG/CR-6350, May 1996.
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Risk Models
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FEED & BLEED COOLING DURING LOOP 1-OF-3 SI 
TRAINS AND 2-OF-2 PORVS FOR SUCCESS

Courtesy of U.S. NRC.
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HIGH PRESSURE INJECTION DURING LOOP 1-0F-3 
TRAINS FOR SUCCESS

Courtesy of U.S. NRC.
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Cut sets and minimal cut sets

• CUT SET: Any set of events (failures of components and 
human actions) that cause system failure.

• MINIMAL CUT SET: A cut set that does not contain 
another cut set as a subset.



Department of Nuclear Science and Engineering 25

Important Note: Xk = X,    k: 1, 2, …

 

Indicator Variables

1 , I f  E j  i s  T  

0 ,  I f  E j  i s  F  

X j  =  

S

EVenn Diagram
___
E
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XT = φ(X1, X2,…Xn) ≡ φ(X)

φ(X) is the structure or switching function.

It maps an n-dimensional vector of 0s and 1s onto 0 or 1.

Disjunctive Normal Form:
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Department of Nuclear Science and Engineering 27

Dependent Failures:  An Example

Component B1

Component B2

B1 and B2 are identical
redundant components

P(fail) = P(XA) + P(XB1 XB2 )    –
P(XA XB1 XB2 )

Failure 
Probability

XS = 1 – (1 – XA)(1 – XB1XB2) = 
= XA + XB1 XB2 - XA XB1 XB2 

System Logic

MCS: M1 = {XA}   M2 = {XB1, XB2}
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Example (cont’d)

• In general, we cannot assume independent failures of 
B1 and B2.  This means that

P(XB1 XB2 ) ≥ P(XB1) P(XB2 ) 

• How do we evaluate these dependencies?
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Dependencies

• Some dependencies are modeled explicitly, e.g., fires, 
missiles, earthquakes.

• After the explicit modeling, there is a class of causes of 
failure that are treated as a group.  They are called 
common-cause failures.

Special Issue on Dependent Failure Analysis, Reliability Engineering and
System Safety, vol. 34, no. 3, 1991.



Department of Nuclear Science and Engineering 30

The Beta-Factor Model

• The    -factor model assumes that common-
cause events always involve failure of all 
components of a common cause component 
group

• It further assumes that 

total

CCF

λ
λ

=β

β
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Generic Beta Factors

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

G
EN

ER
IC

 B
ET

A
 F

A
C

TO
R

 
(M

EA
N

 V
A

LU
E)

REACTOR TRIP
 B

RAKERS

DIS
SEL G

ENERATORS

MOTOR VALV
ES

PW
R S

AFETY/R
ELIE

F P
UMPS

BW
R S

AFETY/R
ELIE

F VALV
ES

RHR P
UMPS

SI P
UMPS

CONT SPRAY P
UMPS

AFW
 PUMPS

SW
/C

CW
 P

UMPS

Average 



Department of Nuclear Science and Engineering 32

Data Analysis

• The process of collecting and analyzing information in 
order to estimate the parameters of the epistemic PRA 
models.

• Typical quantities of interest are: 
• Initiating Event Frequencies
• Component Failure Frequencies 
• Component Test and Maintenance Unavailability 
• Common-Cause Failure Probabilities
• Human Error Rates 
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General Formulation

XT = φ(X1,…Xn) ≡ φ(X)
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XT : the TOP event indicator variable (e.g., core melt, system failure)

Mi : the ith minimal cut set (for systems) or accident sequence (for core   
melt, containment failure, et al)



Department of Nuclear Science and Engineering 34

TOP-event Probability

( ) ( ) ( )∑ ∏ ⎟
⎠
⎞

⎜
⎝
⎛−++= +N

1

N

1
i

1N
iT MP1MPXP K

( ) ( )∑≅
N

1
iT MPXP

)X...X(P)M(P i
m

i
ki =

Rare-event approximation

The question is how to calculate the probability of Mi
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RISK-SIGNIFICANT INITIATING EVENTS
Risk-Significant Initiating Event Period Number of 

Events
Mean 

Frequency Trend

General Transients 1998 – 2004 2120 7.57E-1

BWR General Transients 1997 – 2004 699 8.56E-1

PWR General Transients 1998 – 2004 1421 7.10E-1

Loss of Feedwater 1993 – 2004 188 9.32E-2

Loss of Heat Sink 1995 – 2004 259 1.24E-1

BWR Loss of Heat Sink 1996 – 2004 154 1.88E-1

PWR Loss of Heat Sink 1991 – 2004 105 9.23E-2

Loss of Instrument Air (BWR) 1994 – 2004 19 7.60E-3

Stuck Open SRV (BWR) 1993 – 2004 14 2.07E-2

Stuck Open SRV (PWR) 1988 – 2004 2 2.30E-3

Loss of Instrument Air (PWR) 1990 – 2004 17 1.19E-2

Loss of Vital AC Bus 1988 – 2004 43 2.98E-2

Loss of Vital DC Bus 1988 – 2004 3 2.35E-3

Steam Generator Tube Rupture 1988 – 2004 3 3.48E-3

Very Small LOCA 1988 – 2004 5 3.92E-3

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky.  Used with permission.
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INITIATING EVENT TRENDS
PWR General Transients BWR General Transients
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INITIATING EVENTS INSIGHTS

• Most initiating events have decreased in 
frequency over past 10 years.

• Combined initiating event frequencies are 4 to 5 
times lower than values used in NUREG-1150 
and IPEs.

• General transients constitute majority of 
initiating events; more severe challenges to plant 
safety systems are about one-quarter of events.

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky.  Used with permission.
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ANNUAL LOOP FREQUENCY TREND
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ANNUAL LOOP DURATION TREND
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LOOP FREQUENCY INSIGHTS

• Overall LOOP frequency during critical operation has 
decreased over the years (from 0.12/ry to 0.036/ry)

• Average LOOP duration has increased over the years:
– Statistically significant increasing trend for 

1986–1996
– Essentially constant over 1997–2004

• 24 LOOP events between 1997 and 2004; 19 during the 
“summer” period

• No grid-related LOOP events between 1997 and 2002; 13 in 
2003 and 2004

• Decrease in plant-centered and switchyard-centered LOOP 
events; grid events are starting to dominate

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky.  Used with permission.
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SYSTEM RELIABILITY STUDY RESULTS

STUDY MEAN 
UNRELIABILITY

UNPLANNED
DEMAND
TREND

FAILURE RATE 
TREND

UNRELIABILITY 
TREND

AFW 
(1987–2004)

5.19E-4

EDG
(1997–2004)

2.18E-2 N/A N/A

HPCI 
(1987–2004)

6.25E-2

HPCS 
(1987–2004)

9.48E-2

HPI 
(1987–2004)

1.09E-3

IC 
(1987–2004)

2.77E-2

RCIC 
(1987–2004)

5.18E-2

P. Baranowsky, RIODM Lecture, MIT, 2006
Courtesy of P. Baranowsky.  Used with permission.
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PWR SYSTEM RELIABILITY STUDIES
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P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky.  Used with permission.
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PWR SYSTEM INSIGHTS

• EDG
– EDG start reliability much improved over past 10 years.
– Failure-to-run rates lower than in most PRAs.

• AFW
– Industry average reliability consistent with or better than Station 

Blackout and ATWS rulemaking.
– Wide variation in plant specific AFW reliability primarily due to 

configuration.
– Failure of suction source identified as a contributor (not directly 

modeled in some PRAs).
• HPI

– Wide variation in plant specific HPI reliability due to configuration.
– Various pump failures are the dominant failure contributor.

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky.  Used with permission.
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HPCS Unreliability (8 hr mission) RCIC Unreliability (8 hr mission)
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BWR SYSTEM RELIABILITY STUDIES

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky.  Used with permission.
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• HPCI
– Industry-wide unreliability shows a statistically significant 

decreasing trend.
– Dominant Failure: failure of the injection valve to reopen during 

level cycling.

• HPCS
– Industry average unreliability indicates a constant trend.
– Dominant Failure: failure of the injection valve to open during 

initial injection.

• RCIC
– Industry average unreliability indicates a constant trend.
– Dominant Failure: failure of the injection valve to reopen during 

level cycling.

BWR SYSTEM INSIGHTS

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky.  Used with permission.
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• Criteria for a CCF Event:
– Two or more components fail or are degraded at the same plant 

and in the same system.
– Component failures occur within a selected period of time such 

that success of the PRA mission would be uncertain.
– Component failures result from a single shared cause and are 

linked by a coupling mechanism such that other components in the
group are susceptible to the same cause and failure mode.

– Equipment failures are not caused by the failure of equipment 
outside the established component boundary.

COMMON-CAUSE FAILURE (CCF) EVENTS

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky.  Used with permission.
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CCF OCCURRENCE RATE
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ADDITIONAL CCF GRAPHS

Coupling Factors - Complete CCF Events

Environment
14.2%

Operations
13.7%

Maintenance
28.8%

Hardware
43.4%

P. Baranowsky, RIODM Lecture, MIT, 2006

Courtesy of P. Baranowsky.  Used with permission.
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