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III. I- PRA Synopsis

Figure removed due to copyright restrictions.
Futron Corp., International Space Station PRA, Dec. 2000

Department of Nuclear Science and Engineering




NPP End States

* Release of radioactivity from the containment.
e Individual risk.

 Numbers of early and latent deaths.

e Number of injuries.

e Land contamination.
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* Various states of degradation of the reactor core.




I ™

The Master Logic Diagram (MLD)

 Developed to identify Initiating Events in a PRA.

e Hierarchical depiction of ways in which system
perturbations can occur.

* Good check for completeness.
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I ™
MLD Development

 Begin with a top event that is an end state.
* The top levels are typically functional.

 Develop into lower levels of subsystem and component
failures.

 Stop when every level below the stopping level has the
same consequence as the level above it.
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Nuclear Power Plant MLD
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NPP: Initiating Events

Transients

— Loss of offsite power
— Turbine trip

— Others

e Loss-of-coolant accidents (LOCASs)

— Small LOCA
— Medium LOCA
— Large LOCA
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ILLUSTRATION EVENT TREE: Station Blackout

From: K. Kiper, MIT Lecture, 2006

Courtesy of K. Kiper. Used with permission.

Sequences
Seal END
LOSP DGs LOCA EFW EP Rec. Cont. STATE
0.07 per yr 0.993 success
| 0.007 0 success
success
| core melt
core melt w/ release
1 0.95 0.99 success
| o.01 core melt  4.70E-06
core melt w/ release
0.05 0.94 success
| 0.06 core melt  1.50E-06
core melt w/ release
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LOSP Distribution

Epistemic Uncertainties

5th 0.005/yr (200 yr)
Median 0.040/yr (25 yr)
Mean 0.070/yr (14 yr)
95th 0.200/yr ( 5 yr)

Probability Density
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From: K. Kiper, MIT Lecture, 2006 Courtesy of K. Kiper. Used with permission.
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Offsite Power Recovery Curves
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From: K. Kiper, MIT Lecture, 2006 Courtesy of K. Kiper. Used with permission.
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I N
I I : STATION BLACKOUT EVENT TREE \
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Courtesy of U.S. NRC.
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NPP: Loss-of-offsite-power event tree \

LOOP Secondary Bleed Recirec. Core
Heat Removal & Feed
OK
OK
PDSI
PDS;
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i
Human Performance \

e The operators must decide to perform feed & bleed.

 Water is “fed” into the reactor vessel by the high-
pressure system and is “bled” out through relief valves
into the containment. Very costly to clean up.

e Must be initiated within about 30 minutes of losing
secondary cooling (a thermal-hydraulic calculation).
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I ™

J. Rasmussen’s Categories of Behavior

« Skill-based behavior: Performance during acts that, after a statement
of intention, take place without conscious control as smooth,
automated, and highly integrated patterns of behavior.

* Rule-based behavior: Performance is consciously controlled by a
stored rule or procedure.

» Knowledge-based behavior: Performance during unfamiliar situations
for which no rules for control are available.
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Reason’s Categories

Unsafe acts
— Unintended action

 Slip
e Lapse
e Mistake
— Intended violation
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Latent conditions

*  Weaknesses that exist within a system that create contexts for
human error beyond the scope of individual psychology.

 They have been found to be significant contributors to incidents.

* Incidents are usually a combination of hardware failures and
human errors (latent and active).
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Reason’s model

Fallible

Decisions

™
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Pre-1E (“routine”) actions

Median
Errors of commission 3x103
Errors of omission 103
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I ™

Post-1E errors

* Models still being developed.

o Typically, they include detailed task analyses, identification of
performance shaping factors (PSFs), and the subjective assessment of

probabilities.

o PSFs: System design, facility culture, organizational factors,
stress level, others.
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Risk Models
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FEED & BLEED COOLING DURING LOOP 1-OF-3 SI
TRAINS AND 2-OF-2 PORYVS FOR SUCCESS
|

FALURE TO
PROVIDE FEED
AND BLEED COOLING
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[ I | |
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A Courtesy of U.S. NRC.
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HIGH PRESSURE INJECTION DURING LOOP 1-0F-3
TRAINS FOR SUCCESS
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Courtesy of U.S. NRC.
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M \
Cut sets and minimal cut sets

« CUT SET: Any set of events (failures of components and
human actions) that cause system failure.

o MINIMAL CUT SET: A cut set that does not contain
another cut set as a subset.
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Indicator Variables

x-=/
j \

Important Note: Xk=X, k:1,2,...

1,1f E; is T

O, If E; is F

Venn Diagram E
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X=Xy, Xy, Xp) = P(X)

¢(X) is the structure or switching function.

Disjunctive Normal Form:

N N
Xr=1-TTAa-M» =11
1 1

Sum-of-Products Form:

XTziI\/I ZZMM +.+(=1)

It maps an n-dimensional vector of Os and 1s onto 0 or 1.

M

N+1

=1 =1 j=i+1
Department of Nuclear Science and Engineering

™

.




I H
I I : Dependent Failures: An Example \

B, and B, are identical
—Component B, —  redundant components

—— | Component A T

- Component B,

MCS: M, = {X,} M2={X;;, Xp,}

System L()gic Xs=1-(1-X){A - Xp,Xp,) =

= Xp T X1 Xpy - Xa Xpy Xp;
Failure P(fail) = P(X,) + P(Xg; X5, )
Probability P(X 4 Xg; Xg2)
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Example (cont’d)

In general, we cannot assume independent failures of
B, and B,. This means that

P(XBI XBZ ) 2 P(XBI) P(XBZ )

How do we evaluate these dependencies?

Department of Nuclear Science and Engineering
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I I I Dependencies \

 Some dependencies are modeled explicitly, e.g., fires,
missiles, earthquakes.

e After the explicit modeling, there is a class of causes of
failure that are treated as a group. They are called
common-cause failures.

Special Issue on Dependent Failure Analysis, Reliability Engineering and
System Safety, vol. 34, no. 3, 1991.
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III ] The Beta-Factor Model \

* The p-factor model assumes that common-
cause events always involve failure of all
components of a common cause component

group

e It further assumes that

>

B = ~CCF

?“ total

\ Department of Nuclear Science and Engineering M




Generic Beta Factors

Average

GENERIC BETA FACTOR
(MEAN VALUE)
o
i
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Data Analysis

* The process of collecting and analyzing information in
order to estimate the parameters of the epistemic PRA

models.

Typical quantities of interest are:

Initiating Event Frequencies

Component Failure Frequencies

Component Test and Maintenance Unavailability
Common-Cause Failure Probabilities

Human Error Rates

Department of Nuclear Science and Engineering
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General Formulation

X1 =0(Xy,... X)) = 0(X)

N N
Xr=1-TTA-M;)=1LM;
1 1

N -1 N N4l N
Xp =D Mi=> > MM;+.+(=D) [[M
i=1 i=1 j=i+1 i=1

Xy : the TOP event indicator variable (e.g., core melt, system failure)

M, : the i minimal cut set (for systems) or accident sequence (for core

melt, containment failure, et al)
Department of Nuclear Science and Engineering 33




P(X,)= % P(M,) +...+ (- 1)N+‘P(1lf[ Mi)

TOP-event Probability

N
P(X1)=> P (M;) Rare-event approximation
1

The question is how to calculate the probability of M,

P(M;) = P(X}...X},)

\ Department of Nuclear Science and Engineering
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III | RISK-SIGNIFICANT INITIATING EVENTS

Risk-Significant Initiating Event Period Number of Mean Trend
Events Frequency
General Transients 1998 — 2004 2120 7.57E-1 l
BWR General Transients 1997 — 2004 699 8.56E-1 l
PWR General Transients 1998 — 2004 1421 7.10E-1 1
Loss of Feedwater 1993 — 2004 188 9.32E-2 l
Loss of Heat Sink 1995 - 2004 259 1.24E-1 l
BWR Loss of Heat Sink 1996 — 2004 154 1.88E-1 |
PWR Loss of Heat Sink 1991 - 2004 105 9.23E-2 l
Loss of Instrument Air (BWR) 1994 — 2004 19 7.60E-3 l
Loss of Instrument Air (PWR) 1990 — 2004 17 1.19E-2 l
Loss of Vital AC Bus 1988 — 2004 43 2.98E-2 RSN
Loss of Vital DC Bus 1988 — 2004 3 2.35E-3 -
Stuck Open SRV (BWR) 1993 - 2004 14 2.07E-2 -
Stuck Open SRV (PWR) 1988 — 2004 2 2.30E-3 =N
Steam Generator Tube Rupture 1988 — 2004 3 3.48E-3 -
Very Small LOCA 1988 — 2004 5 3.92E-3 =N

Department of Nuclear Science and Engineering

P. Baranowsky, RIODM Lecture, MIT, 2006

Courtesy of P. Baranowsky. Used with permission.
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INITIATING EVENT TRENDS

5 5
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P. Baranowsky, RIODM Lecture, MIT, 2006
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I INITIATING EVENTS INSIGHTS \

 Most initiating events have decreased in
frequency over past 10 years.

 Combined initiating event frequencies are 4 to 5
times lower than values used in NUREG-1150
and IPEs.

* General transients constitute majority of
initiating events; more severe challenges to plant
safety systems are about one-quarter of events.

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
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IMirsnNUAL LOOP FREQUENCY TREND\
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"Il ANNUAL LOOP DURATION TREND \
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Mir Loop FREQUENCY INSIGHTS \

 Overall LOOP frequency during critical operation has
decreased over the years (from 0.12/ry to 0.036/ry)

 Average LOOP duration has increased over the years:
— Statistically significant increasing trend for
1986—-1996
— Essentially constant over 1997-2004

e 24 LOOP events between 1997 and 2004; 19 during the
“summer” period

* No grid-related LOOP events between 1997 and 2002; 13 in
2003 and 2004

 Decrease in plant-centered and switchyard-centered LOOP
events; grid events are starting to dominate M

Department of Nuclear Science and Engineering
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"% STEM RELIABILITY STUDY RESUL@

(1987-2004)

MEAN UNPLANNED FAILURE RATE | UNRELIABILITY
S EUDA UNRELIABILITY DEMAND TREND TREND
TREND
AFW l l
5.19E-4 =)
(1987-2004)
EDG
2.18E-2 N/A N/A <)
(1997-2004)
HPCI
6.25E-2 l l l
(1987-2004)
HPCS l
9.48E-2 =) =)
(1987-2004)
HPI
1.09E-3 l <)
(1987-2004) l
IC
2.77E-2 l l =)
(1987-2004)
RCIC
5.18E-2 l l =)
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l-PWR SYSTEM RELIABILITY STUDIES

EDG Unavailability (FTS)
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. Baranowsky, RIODM Lecture, MIT, 2006
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i PWR SYSTEM INSIGHTS \

 EDG
— EDG start reliability much improved over past 10 years.
— Failure-to-run rates lower than in most PRAs.

e AFW
— Industry average reliability consistent with or better than Station
Blackout and ATWS rulemaking.
— Wide variation in plant specific AFW reliability primarily due to
configuration.

— Failure of suction source identified as a contributor (not directly
modeled in some PRAS).

e HPI
— Wide variation in plant specific HPI reliability due to configuration.
— Various pump failures are the dominant failure contributor.

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
Department of Nuclear Science and Engineering 43




l'll'l' BWR SYSTEM RELIABILITY STUDIES

HPCI Unreliability (8 hr mission) RCIC Unavailability (FTS)
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P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
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i BWR SYSTEM INSIGHTS \

« HPCI

— Industry-wide unreliability shows a statistically significant
decreasing trend.

— Dominant Failure: failure of the injection valve to reopen during
level cycling.

« HPCS
— Industry average unreliability indicates a constant trend.

— Dominant Failure: failure of the injection valve to open during
initial injection.
e RCIC
— Industry average unreliability indicates a constant trend.

— Dominant Failure: failure of the injection valve to reopen during
level cycling.

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
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i
COMMON-CAUSE FAILURE (CCF) EVENTS

* Criteria for a CCF Event:

— Two or more components fail or are degraded at the same plant
and in the same system.

— Component failures occur within a selected period of time such
that success of the PRA mission would be uncertain.

— Component failures result from a single shared cause and are
linked by a coupling mechanism such that other components in the
group are susceptible to the same cause and failure mode.

— Equipment failures are not caused by the failure of equipment
outside the established component boundary.

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
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CCF OCCURRENCE RATE

Occurrence Rate
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Distribution of CCF Events by System

Coupling Factors - Complete CCF Events
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