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General Aspects

• Design Objective
Safe, reliable, economical operation at the rated power level over the core 
lifetime.

• Interaction with other disciplines
Thermal considerations determine core size and geometry.
The length of time a fuel element can utilized is determined by its ability to 
withstand radiation damage and thermal/mechanical stresses.

• The design process is iterative drawing heavily on past experience.
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Principal Design Functions Involving Reactor Physics

• Core criticality and power distribution
Are space and time dependent because of fuel burnup and isotope 
production over the core life
Depend on core enrichment, moderator-to-fuel ratio, core geometry, 
location and type of reactivity control, fuel element design

• Reactivity and control analysis (safety)
Must control excess reactivity in initial fuel loading
Allocate this reactivity to movable control rods, soluble neutron poisons in 
the coolant (“chemical shim”; boron), and “burnable poisons” or 
“mechanical shim” (gadolinium, borosilicate glass).
Describe short-term reactivity changes (and reactor kinetic behavior);  
reactivity coefficients.

• Depletion analysis (economic performance)
Monitor fuel composition and reactivity as a function of energy removal
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The Big Picture

The Multigroup Diffusion Equations:
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Power Distribution

• Problem:  The group constants depend on the flux itself.
• Criticality:  Set              and          equal to zero. 
• Perform two multigroup calculations:

Use a library code to obtain cross sections and average them by treating spatial 
and time dependence very crudely.  Calculate the intragroup fluxes relying on 
models of neutron slowing down and 

thermalization, e.g., assuming that                       for energies between 1 

eV and 105 eV,                           in the high-energy range, and proportional to the 
Maxwellian distribution for thermal energies.
This fine spectrum calculation may involve as many as 1000 groups.
These intragroup fluxes are, then, used to calculate the group constants for a 
coarse group calculation with spatial dependence.  Iteration is possible.

• LWRs:   Usually three fast groups and one thermal.
• Fast Reactors:  As many as 20 groups.
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Two-Group Criticality Calculation (Bare Homogeneous Reactor)
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More on the Multiplication Factor
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The Six-Factor Formula
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Comments

thη

thf

ε

233U: 2.29,  235U: 2.07,  239Pu: 2.15,  natural uranium: 1.34, enriched 
uranium: 1.79.  Increases initially as Pu is produced from 238U, 
decreases later as fission products are produced

About 0.9 for natural uranium.  Larger as absorptions in nonfuel
material decrease.

p About 0.70 for homogeneous mixtures, 0.9 for heterogeneous mixtures,     
increases as the ratio of moderating atoms to fuel atoms becomes large.

About 1.05 for natural uranium.

1L Water: 0.052 m, heavy water: 0.114 m,  graphite: 0.192 m

2L Water: 0.027 m, heavy water: 1.0 m,  graphite: 0.54 m

B2 Typically less than 10 m-2, therefore  PNL1 > 0.97  and PNL2 > 0.99 for H2O
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Time Dependence

• To study the time-dependence of the flux we have to solve the multigroup 
equations in slide 3 augmented to include the equations for delayed neutrons.

• There are two time scales:
Short-term changes (seconds) due to temperature effects and external deliberate 
changes
Long-term changes (hours or more) due to fuel depletion and fission-product 
buildup.
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Point Kinetics

• Recall (slide 6):

• Local perturbations, e.g., by moving the control rods, leads to a readjustment of            
that is usually slight and happens in a few milliseconds.  Then, the readjusted shape 
rises or falls “as a whole” depending on whether the perturbation increased or 
decreased k.

• Point kinetics allows us to investigate the level (or average) flux assuming that the 
shape does not change appreciably.

• We average over all energy groups and write the neutron density as                           

• n(t) is the total neutron density or the total power 

• Using this equation in the space- and time-dependent equations and including delayed 
neutrons leads to
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Point Kinetics Equations
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neutron and absorption inducing fission

l
Prompt neutron lifetime between birth of a neutron and absorption;

10-3 to 10-4 for thermal reactors; 10-7 for fast reactors
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Delayed Neutron Precursors

Glasstone & Sesonske, 
Nuclear Reactor Engineering,
Chapman & Hall, 1994
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Reactivity Feedback

• The reactivity depends on the neutron density (or power level) itself.
• This is due to the fact that k depends on macroscopic cross sections, which 

themselves involve the atomic number densities of the materials:

• The atomic density depends on the power level because:
Material densities depend on temperature, which, in turn, depends on the power 
distribution
The buildup of poisons and burnup of fuel (long-term effect).

• We write

External reactivity from some reference power level P0 for 
which        is zero.
Change in reactivity due to inherent feedback mechanisms.
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Power Coefficient of Reactivity
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To be determined by T-H analysis

Average temperature of region j

Safety requirement: 0P <α
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Dominant Coefficients of Reactivity
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Doppler broadening of resonance absorption decreases p.         
For PWRs:   (-4 to -1)x10-5 Δρ/°K or (-4 to -1) pcm (per cent mille)/°K.

Moderator:  Thermal expansion leads to loss of neutron moderation and a 
corresponding decrease in p.  The decrease in the density of poison atoms leads 
to reactivity increase.  Overall effect should be negative.     
For PWRs:  (-50 to -8) pcm/°K.
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General Design Criteria 27 and 28

• Criterion 27--Combined reactivity control systems capability. The reactivity control 
systems shall be designed to have a combined capability, in conjunction with 
poison addition by the emergency core cooling system, of reliably controlling 
reactivity changes to assure that under postulated accident conditions and with 
appropriate margin for stuck rods the capability to cool the core is maintained.

• Criterion 28--Reactivity limits. The reactivity control systems shall be designed 
with appropriate limits on the potential amount and rate of reactivity increase to 
assure that the effects of postulated reactivity accidents can neither (1) result in 
damage to the reactor coolant pressure boundary greater than limited local yielding 
nor (2) sufficiently disturb the core, its support structures or other reactor pressure 
vessel internals to impair significantly the capability to cool the core. These 
postulated reactivity accidents shall include consideration of rod ejection (unless 
prevented by positive means), rod dropout, steam line rupture, changes in reactor 
coolant temperature and pressure, and cold water addition.
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Standard Review Plan: 4.3 Nuclear Design 2

The areas concerning reactivity coefficients include:

The applicant's presentation of calculated nominal values for the reactivity 
coefficients such as the moderator coefficient, which involves primarily 
effects from density changes and takes the form of temperature, void, or 
density coefficients; the Doppler coefficient; and power coefficients.
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10 CFR 50.68 Criticality Accident Requirements (1)

• Each licensee shall comply with the following requirements in lieu of 
maintaining a monitoring system capable of detecting a criticality as 
described in 10 CFR 70.24:

Plant procedures shall prohibit the handling and storage at any one time of 
more fuel assemblies than have been determined to be safely subcritical under 
the most adverse moderation conditions feasible by unborated water.

The estimated ratio of neutron production to neutron absorption and leakage (k-
effective) of the fresh fuel in the fresh fuel storage racks shall be calculated 
assuming the racks are loaded with fuel of the maximum fuel assembly 
reactivity and flooded with unborated water and must not exceed 0.95, at a 95 
percent probability, 95 percent confidence level. This evaluation need not be 
performed if administrative controls and/or design features prevent such 
flooding or if fresh fuel storage racks are not used.
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10 CFR 50.68 Criticality Accident Requirements (2)

• If no credit for soluble boron is taken, the k-effective of the spent fuel storage racks loaded 
with fuel of the maximum fuel assembly reactivity must not exceed 0.95, at a 95 percent 
probability, 95 percent confidence level, if flooded with unborated water. If credit is taken for 
soluble boron, the k-effective of the spent fuel storage racks loaded with fuel of the maximum 
fuel assembly reactivity must not exceed 0.95, at a 95 percent probability, 95 percent 
confidence level, if flooded with borated water, and the k-effective must remain below 1.0 
(subcritical), at a 95 percent probability, 95 percent confidence level, if flooded with 
unborated water.

• Radiation monitors are provided in storage and associated handling areas when fuel is present 
to detect excessive radiation levels and to initiate appropriate safety actions.

• The maximum nominal U-235 enrichment of the fresh fuel assemblies is limited to five (5.0) 
percent by weight.
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Core Composition Changes – Fission Product Poisoning

• Some fission products have large thermal absorption cross section.  The 
poisoning effect is insignificant for fast reactors.

• Most important products:                with                    and
with

• We measure the impact of a poison by calculating the reactivity decrease it 
causes.

• The thermal utilization                       is the only factor that is appreciably 
affected by the poison.      
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Xenon Poisoning
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Xenon and Reactor Shutdown
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n/m2s will have a negative insertion of 
reactivity of about -0.33, a sizable 
amount.

Glasstone & Sesonske, 
Nuclear Reactor Engineering,
Chapman & Hall, 1994
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Fuel Depletion (Burnup)

• During reactor operation, fuel (235U) is depleted and new fuel (239Pu) is produced.
• There is a net decrease of reactivity over time.
• In general,

is the neutron fluence

• The dependence of the flux on the fuel density complicates the calculations.
• In lieu of the fluence, it is customary to use the thermal energy output per unit mass of 

fuel (burnup) in MWD/T (MW days per metric ton of uranium fuel).
• Current limit:  62 GWd/T.  For a 1,000 MW PWR, burnup is about 15 GWd/T after 

one year.
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REGULATORY GUIDE 1.77
ASSUMPTIONS USED FOR EVALUATING A CONTROL ROD 

EJECTION ACCIDENT FOR PRESSURIZED WATER REACTORS

• “In general, failure consequences for U02 have been insignificant below 
300 cal/g for both irradiated and unirradiated fuel rods. Therefore, a 
calculated radial average energy density of 280 cal/g at any axial fuel 
location in any fuel rod as a result of a postulated rod ejection accident 
provides a conservative maximum limit to ensure that core damage
will be minimal and that both short-term and, long-term core cooling 
capability will not be impaired.”
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