

Fast Reactor Materials Issues & Their Implications for Design

Professor R. G. Ballinger

Department of Nuclear Science & Engineering Department of Materials Science and Engineering

Massachusetts Institute of Technology

Extension of LWR Conditions to FR Conditions

- Key Differences
 - Flux Distribution
 - » (Energy)
 - Total Dose
 - » LWR/Thermal-~ 50 dpa max, FR > 100 dpa
 - Temperature
 - » 300°C (>300 for SCW) LWR/Thermal, FR > 500°C
 - Fuel Type
 - » UO₂ (MOX), UC/UCO LWR/Thermal, UC, UN, (Cermet, Cer-Cer, etc) FR
 - » Exposure (Burnup)
 - Cladding Type
 - » Zr Alloy LWR, SS, Fe-Based, Ceramic (SiC/SiC), etc. FR
 - » Dose
 - Operating Environment
 - » LWR/"Thermal-Water, He, SCW, FR SC-CO₂, He,

Design Implications

- Flux Distribution
 - Radiation Damage
 - » Temperature, Energy Distribution
- Total Dose
 - Radiation Effects
 - » Swelling, He Embrittlement, Creep
- Temperature
 - Creep, Creep-Fatigue, Microstructural Stability
- Fuel Type
 - Fast Reactor "legacy" Data
 - Swelling, FGR
- Cladding Type
 - Fluence
- Operating Environment
 - Corrosion
 - Stability (Microstructural)