Materials Issues Related to Reactor Design, Operation & Safety

Professor R. G. Ballinger

Department of Nuclear Engineering
Department of Materials Science & Engineering

Objective

 To Develop an Understanding of Materials Issues and Their Implications for Design, Operation & Safety

Outline

Lecture #1: Materials Selection

Lecture #2: Radiation Damage/Effects & Implications for Design

Lecture #3: Environmental Degradation & Implications for Design

Lecture #4: Applications to PWR Design (Steam Generator Design, Penetrations)

Lecture #5: Applications to GFR Design

Materials Selection Considerations

- Applicability
- Suitability
- Fabricability
- Availability
- Economics
- Compromise

Assessment of Applicability

- 1. Mechanical Environment
 - Stress (Load) History
 - Strain History
 - Normal, Transient, Accident
- 2. Chemical (Electrochemical) Environment
 - Normal, Faulted
- 3. Thermal Environment
- 4. Nuclear Environment
- 5. Mechanical-Chemical-Thermal-Nuclear

General Material Failure Modes

- 1. Overload
- 2. Creep Rupture
- 3. Fatigue
- 4. Brittle Fracture
- 5. Wastage
- 6. Environmentally Enhanced
- 7. Radiation Effects Related

Environmentally Enhanced Failure Modes

- 1. Stress Corrosion Cracking
- 2. Hydrogen Embrittlement
- 3. Corrosion Fatigue
- 4. Intergranular Attack
- 5. Erosion-Corrosion
- 6. Creep-Fatigue Interaction

Key Point

- Big Difference Between General & Localized Corrosion
 - General Corrosion
 - » Predictable
 - » Slow (Normally)
 - Localized Corrosion
 - » "Unpredictable
 - » Potentially Very Rapid
 - » Can be Multi-Phenomena (Pitting leading to Crack Initiation)
 - Significant Design Implications
 - » Example-PWR Steam Generators

Radiation Effects Related

- Radiation Embrittlement
- Radiation Enhanced Creep
- Swelling
- Radiation Induced Growth
- Fuel/Clad Interaction

Mechanical Environment

- 1. Load-Time History (Operational)
 - Static
 - Cyclic (Fatigue)
 - Elastic vs. Plastic
- 2. Fabrication Related Loads
 - Welding
 - Machining
- 3. Environment Related Loads
 - Thermal (Static, Cyclic)
 - Nuclear (Distortion due to swelling)
- 4. Time Dependent vs. Time Independent
 - Creep
 - Creep-Fatigue

Chemical Environment

- 1. Electrochemical Compatibility
- 2. Bulk vs. Local
- 3. Normal vs. Faulted
- 4. Nominal vs. Actual

Thermal Environment

- 1. Steady State
- 2. Startup/Shutdown
- 3. Transient
- 4. Accident

Nuclear Environment

- 1. Effects on Mechanical Properties
 - Ductility
 - Toughness
 - Strength
- 2. Dynamic Effects
 - Radiation Induced Segregation (RIS)
 - Growth
 - Fission Gas Release & Fuel Swelling
- 3. Effects on Chemical Environment
 - Fuel Rod Chemistry
 - Coolant Chemistry
- 4. Effects on Corrosion Products
 - Activation Products

Mechanical/Chemical/Thermal/ Nuclear Environment Interactions

- Stress Corrosion Cracking
- Corrosion Fatigue
- Hydrogen Embrittlement
- Creep-Fatigue Interaction
- Pellet Clad Mechanical Interaction (PCMI)
- Fretting
- Corrosion Product Transport
- Flow Assisted Corrosion
- Radiation Induced Segregation

Interactions

Compromise

Assessment of Suitability

- 1. Is the material qualified for use in the environment?
- 2. Is there an existing data base?

Is The Material In The ASME Code

- 3. If not, what information will be required?
- 4. Can the information be obtained in time?

Assessment of Fabricability

- 1. Thermomechanical Processing
- 2. Can the component be fabricated from the material?
- 3. Quality Control
- 4. Quality Assurance

Thermomechanical Processing

- 1. Can the desired mechanical properties be obtained?
- 2. Mechanical properties variability? How much can be allowed?
- 3. Can the desired properties be obtained?
- 4. Can the desired properties be maintained?

Component Fabrication

- 1. Fabrication techniques
 - Welding

Effects on Chemistry

Effects on Mechanical Properties

Effects on Chemical/Electrochem. Props.

Effects on Mechanical Environment

- Residual Stress
- Machining Stress Concentrators
- 2. Assembly

Crevices

Couples

Assessment of Availability

- 1. Is the Material Available?
- 2. Is the Source Reliable?
- 3. Is there Enough of it?
- 4. At What Cost?

Assessment of Economics

- 1. How Much Does it Cost Now?
- 2. How Much Could it Cost?

Compromise

The Great Tragedy of Engineering:

The slaying of a great hypothesis by an ugly fact

Corollary

Don't Do Stupid Things- a.k.a. Davis Besse

Material Degradation Prevention Options

1. Design:

Proper Materials Selection at the Initial Design Phase Material "Friendly" Design

2. Remediation

Alteration of Chemical Environment Alteration of Mechanical Environment Alteration of Operating Conditions

3. Replacement

Materials Selection

- 1. Select The Right Material in the First Place
- 2. Change the Material Properties
- 3. Replace the Material

Alteration of Environment

- 1. Changing System Conditions
 - Lower Temperature
 - Change Chemistry

Material "Friendly" Design

- 1. Avoid Stress/ Stress Concentrations
- 2. Avoid Galvanic Couples
- 3. Avoid Sharp Bends of Velocity Changes in Piping Systems
- 4. Design Tanks for Complete Draining
- 5. To Weld or Not to Weld?
- 6. Design to Exclude Air
- 7. Avoid Heterogeneity
- 8. Design for Replacement