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Abstract

The paper presents two methods to assess the cost effectiveness of a
steam generator pipe. The first method is a time series analysis with real
earthquake data. The second method is a probabilistic assessment which
leads to the evaluation of a life-time mean cost.

1 Introduction

When performing a seismic design of a power plant, an engineer is faced with
the following dilemma : damping systems for pipes, vessels, steam generator
are very costly equipment but on the other hand they enable the structure to
withstand a larger earthquake. Therefore, selecting the minimum damping is a
matter of careful evaluation.

1.1 Natural frequency of the harmonic oscillator

This dilemma can be trivially illustrated by a single oscillator connected to a
wall by a spring and with a damping system that we will take as parametric.
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Figure 1: Harmonic oscillator

The fundamental equation governing this system is :

d*u du
meg = F(t) = k() — d(5) 1)

Here F(t) represents the force of the earthquake on the system. Actually
the earthquake is not really a force external to the system that is applied to
it. An earthquake is really an acceleration of the ground which was supporting
the structure. Thus equation can be rewritten assuming that the ground is



moving with displacement ug(t) as :

Pu  dPug du  dug Pue
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Let’s define y(t) = u(t) — ug(t). becomes the simple equation :

m(

d?y dy d*ug
— 4+d—+ky=-m——r 3
M T TR T T e 3)
Let us define wg = \/% and 2Quwg = %. Then the homogeneous part of
can be written simply as :
Y 90w ™ 4wy — 0 (4)
dt2 0 TV
The characteristic equation is

2 4+ 2Quor + w2 =0

For our problem, we’ll consider that wy is fixed whereas @) is the parameter
(actually Q is called the quality factor and it is directly related to the damping).

The delta of this equation is then A = (2Qwp)? — 4wp. Thus A = 0 when
@ = 1 this is called critical damping, A > 0if @ >1and A <0if Q@ < 1. In
our case @ is always below 1, so A < 0.

1.2 Forced excitation: earthquake

We shall now look at the forced oscillation of this system : an earthquake will
induce a ground acceleration term that will excite the oscillator at the frequency
w.

To find the response spectrum, one usually assume that the solution y(t) is
y(t) = Re(ye’=?

Therefore, with the forced term can be written as :

— Wy + jw2Quoy + wiy = —wug (5)
Equation leads to the following expression for the amplification:

y (&)
A 0 6
e 1= ()22 +4Q3 () .

Plotting this ratio with different values of damping on figure suggests
that for undamped systems (@ < 1) the amplification is larger if @ is smaller.

More important, we can also plot the acceleration as a function of the accel-
eration at the natural frequency :

denam'ic _ 1 (7)

Fstatic \/(1 —(2)2)2 1 AQ2(2)?
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Figure 3: Amplification of the force due to the motion of the ground



F .

Q[ Tz
0.01 50.0
0.02 25.0
0.05 10.0
0.1 5.0
0.2 2.6
0.5 1.2

Table 1: Maximum dynamic amplification variations with Q

Figure is a plot for different values of Q : it is important to notice that
for @ < 1 the force due to the acceleration of the ground is amplified in the
system, which means that the ground acceleration is amplified near the natural
frequency wg and can cause more stress than the acceleration itself.

To be more precise, in table the maximum amplifications of the earth-
quake acceleration with different values of Q are given.

What is also interesting is that the more damping we add to the system,
the less significant is the incremental effect for the amplification (see figure (4))):
this means that at some point adding some more damping will prove to cost
more than it can benefit the plant.
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Figure 4: Maximum dynamic amplification

We have thus verified with this simple model the expected conclusion :
adding more damping to a system will reduce the amplification in the system,
but at some point the marginal efficiency of the damping is smaller compared
to the additional cost.



2 Decoupled differential equations of a system

2.1 Lumped masses analysis method

The harmonic oscillator approach gives interesting results for the plant, but it is
somehow too simple to capture the complexity of the piping system in a nuclear
plant.

The approach broadly used in seismic analysis is the so-called ”lumped anal-
ysis”. The piping system of the nuclear plant is modeled as a succession of
harmonic oscillator with mass m;, coupled to one another by a spring and an
absorber. Of course we have Xm; = M;ytq;- And the relation between the differ-
ent oscillators is given by the beam theory. The strength of this approach is that
it enables the engineer to reduce the original continuous pipe to a succession of
linked masses which only have one degree of freedom (horizontal displacement
if the pipe is vertical). The fundamental principle of dynamic applied to the
mass m; yields

dPu; du;  dug
my; di2 = _ki,i+1(ui+1 - Uz) - kifl,i(uifl - Uz) - Ci( di - W) (8)
As we did before, we will define y; = u; — uqg the relative displacement. We
Y1 mi 0 e 0
Yo 0 me 0
also define Y = . , M = .
mi k1,1 k‘1,2 cee kl,n
mo ko1 koo ka.n
,m= . K = . ) . is the matrix defined as
mp kn,l kn,Q kn,n
Fy
Fy
the static response of the beam to a force F' = . on each mass. So
E,

F = KY. D is the so-called "damping matriz” and represents the ability of the
system to transform kinetic energy into heat and thus to dissipate some energy.
Equation can then be written as :

MY + DY + KY = —maig (9)

Equation @ is not trivial to solve as is. But it can be reduced to a linearly
independent system of n equations by decomposing the homogeneous equation
in terms of harmonic solutions.



2.2 Modeling the pipe

After this brief theoretical overview of the modeling method, we will in this
section effectively model a steam generator pipe. We will afterwards study the
effect of an earthquake on the pipe with different damping values.

L/3
Mass 1 .r—> u

L/3
Mass 2 .7—’ u2

L/3

-
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Figure 5: Modeling the pipe: two lumped masses, fixed at z=0 and z=L

The pipe will be considered to be fixed between two walls. We will model
the pipe as two lumped masses, each of mass % at a distance % from
the wall. See figure ().

Some usual figures for the pipe’s geometry and properties are summarized
below :

e Pipe length: Liptq; =3 m

e Pipe outside diameter 21 mm, material thickness of 1.5 mm

e Pipe composed of stainless steel grade 304: p = 8000 kg/m?3, E = 193 GPa
e Pipe filled and surrounded with water at 70 M Pa (pwater = 750 kg/m?)

e Virtual mass coefficient of 1.1

From these properties, we can directly compute some useful information on
the pipe. First its mass is Miotar = Mpipe + M cige + My opeq- Where Myi,e =
W(Rgut_Rz‘zn)Ltotalpa M%side = WR?anwater and M#’wwd = Cuirtualﬂ-Rzutpratew
This gives Mp;pe = 2.545 kg, M) .4 = 0.779 kg, M . = 1.120 kg. We end
up having a total mass Motq; of 4.444 kg. Thus each lumped mass will have a

mass m = 2.222 kg.



Another parameter of importance is I the moment of inertia of the pipe
around its x-axis. It is defined as I = [ A 22dA. In our case, using polar

coordinates we get x = r.cosf and dA = rdrdf. Thus I = fOQW f;“ r3cos?0drdd,
I= fOQTr cos?0d0 f}fi" r3dr. So we get I = 6.739 x 1072 m*.

2.3 Differential equation governing the beam motion

Recalling equation @ we have to find the matrix K. K is related to the response
in displacements of the beam when a force F' is applied at masses’ locations.
We introduce the matrix A defined as Y = AF where Y = ( z; ) and F =

Iy

Fy )

Given the linearity of this equation, we can study the effect of I} alone and
F5 alone.

For instance Fy will induce a displacement at z = L/3 and also at z = 2L/3
proportional to Fj.

To find this relation, one has to solve the fundamental equation of the beam
dynamic motion. [ is the moment of inertia of the pipe around the x-axis.

84U + Mtotal 62’“ _ Zf
9z* = EI 0t*  EI
In our case, we are interested in static response (% = 0) and the linear forces
f is simply F16(z = L/3) where §(z = L/3) is the Dirac function.
So the differential equation we have to solve is:

o Fé(z=1L/3
u _ Fio(z=L/3) (10)
0z4 EI
Given the geometry of the pipe, there is no displacement at the boundaries,
and there is no angular deviation as well. We have the following boundary con-

ditions:

{ w(z=0)=0and u(z=L) =0
0

9u(z=0)=0and $4(z=L) =0

. . Fy Y1
By solving equation we get figure @ So A x ( 0 ) = ( ) =

Y2
F
0.0988 7%
0.0679L%
Given the symmetry of the system we can predict that similar results will
be found for Fy. Thus putting all the results together we get A.

A L (0.008 0.0679
~ BT\ 0.0679 0.0988
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Figure 6: Displacement response of the pipe at force Fj

It is important to note that A is symmetric, thus A™! is defined. The way
A is defined it is clear that K = A~!.
(11)

o EI( 19.1806 —13.1818 )

—13.1818  19.1806



2.4 Natural frequencies of the undamped system

The fundamental equation of the undamped system with no excitation is the
following :

MY + KY =0 (12)
To obtain the natural frequencies, we will solve equation for Y =

ewt < - > Equation becomes

Y2
~wMy+ Ky =0
In order to have a non trivial solution (i.e. y # 0) w shall verify:
Det(—w?*M + K) =0 (13)
Solving we get

w1 =593 rad/s or f1 =94 Hz
wo =137.6 rad/s or fo =219 Hz
Corresponding to these values, we get the Y7 and Y5 vector solutions.

1
_ 1
=7 1)

1

_ 1

=37 4)

This two modes represents the two fundamentals oscillation modes of the

beam, and can be represented on figure

Figure 7: Fundamental modes of the beam: for w; in blue, for ws in red.
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2.5 Uncoupled differential equation

Now that we have the two fundamental modes of the beam, we will rewrite our
initial problem in this coordinate system. To do so, we define the modal matrix

associated with this base :
1 1

1
P(vv) =5 (]

The new coordinate vector X is such that Y = PX. We also have a critical
damping matrix D,,.. So the fundamental equation MY + D..Y + KY = —mug
can be rewritten as

P'MPX + P'D..PX + PP KPX = —Ptmuig (14)

We find that PPMP = M. We define a new critical damping matrix

!
D!. = P'D.,P as: D, = < 40 > Computing K/ = P'KP we get

0 d
0.7802 0 3.1424
/ 4 / t
K' =10 0 42001 ) We also have m’ = P'm = ( 0 )

So equation becomes simply
MX + D\ X +K'X = —mig

I

And if we take X = > , then we can write the new set of equation as

the uncoupled following system of equations:

(15)

may + di @1 + 7.80 x 103z, = —3.14iig
maty + dyaiy +4.21 x 10425 = 0

We now need to get values for d} and dj. We can find the critical damping
values, and then express the total damping of the system as a fraction of the
critical damping. By definition of the critical damping of a single harmonic oscil-

lator we get d,.; = vV4m7.80 x 103 ~ 263.3 kg/s and d,. , = V4m4.21 x 10* =

263.3 kg/s.
, (2633 0
Der = ( 0 6116 )

3 Earthquake data

The next step is to use our model and to compute the displacement when the
pipe is subject to an earthquake. To do this, we will use data obtained from
real earthquake (taken from [I]) and apply it to our model.

3.1 Hector mine, Joshua tree earthquake, CA

This earthquake occurred on October 16, 1999 in California. The data come
from the online data-base COSMOS Strong Motion Program. The seismograph

11



was located at 48.4 km from the epicenter (vertical projection of the focus), and
the earthquake was rated 7.1 on the Richter scale (which goes up to 9.0).

Figure 8: Joshua tree: earthquake location

The data consists of a list of 3000 acceleration recorded during 60 seconds
(i.e. one record every 0.02 s).
Also of interest is the Fourier spectrum of this signal. The acquisition fre-
quency is ﬁ = 50 Hz. The Power Spectral Distribution (or Fourier Spectrum)
2
is defined as % where F(f) is the fourier transform of the ground acceler-
ation.

12
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Figure 9: Est-West acceleration of the ground during Hector Mine’s Earthquake
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Figure 10: Fourier spectrum of the Hector Mine’s seismograph

13



3.2 New Hampshire’s 1982 earthquake

This earthquake occurred on January 19, 1982 in New Hampshire. It was rated
4.5 on the Richter scale, so it was much more modest than the precedent one,
but every cannot be sitting right on the San Anrea’s Fault zone! The accelero-
graph we will use was recorded at Franklin Falls Dam, NH at 10.8 km from the
epicenter (note that the data were acquired much closer to the epicenter).

100 T T T T T T T T

g0 &

B0+ B

il .
20 .

A0k 4
EOE 4

Groung acceleration (crnfs?)

Aok 4
0o 1

-120F -

Time (s)

Figure 11: Est-West acceleration of the ground during NH’s Earthquake
Even though the earthquake had some large acceleration peaks, its dura-

tion (about 20 seconds) is much shorter than the previous earthquake. The
acquisition frequency is 200 Hz.
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Figure 12: Fourier spectrum of New Hampshire 1982 earthquake’s seismograph

4 Response of the pipe to an earthquake

Now that we both have the uncoupled equation and some sample of ground
motion we can solve with the data of the two different earthquakes and
study the evolution of the displacement of the lumped masses and the force on
the support caused by the ground motion as a function of the damping.

4.1 Methodology
For each earthquake we will proceed as follow:
e Pick a damping value (« percent of critical damping)

e Solve the uncoupled differential equation using a step-by-step algorithm
(we only know g at discreet times) : MatLab’s ode45 solver is used

e Compute the maximum displacement of the lumped masses
e Deduce the forces applied on the support for that particular «

e Increment « and start over...

This will give us a curve of amplification versus damping ratio.

15



4.2 Calculations for the Joshua Tree’s earthquake
4.2.1 a=0.01

First of all we note that the second equation of equation set is an unexcited
harmonic oscillator. If we assume that the pipe was originally at rest (initial
displacement and velocity are zero) then z3(t) = 0 all along the earthquake.
This means that y;(¢) = y2(t). The only variable of interest is 1 (¢).

A MatLab solve of this problem gives the following solution for x1 (¢).

® 10

%y {t)incm

_1 5 1 1 1 1 1
0 10 20 30 40 a0 60

Tirme (g)

Figure 13: z; as a function of t for a = 0.01

We also get the maximum value of z1(t*) = 1.3513 x 1073 e¢m. We can
also compute the value of the maximum acceleration of the lumped mass. The
maximum acceleration is 65.2882 x 1073 em/s? and the maximum velocity is

285.28 x 1073 em/s.
We can formulate our answer with the maximum displacement vector X,,qz

as: Xaz = < 1'35)13 > x 1073 em

_ - ~( 0.9555 _3
Then Y = PX 50 Yiee = PXmae. We find Y00 = ( 0.9555 ) x 107° c¢m.

We also recall that FF = KY, so Fe = KYiga: and therefore Fi,.. =

263.66
( 263.66 ) N.

Now given the symmetry of the problem, it is clear that the force on the
supports are the same. In addition we have just proved that F; = F5 so by a

16



trivial force balance on the pipe we get that Fsy,port = 263.66 N.

4.2.2 Summary of the results

If we apply the same reasoning and calculations for different values of the damp-

ing ratio a we get the results summarized in table

(67

Ymaz ¥ 10% in cm

Firae in N

Amplification ratio Mai

max

Maz(Mug)
0.01 0.9555 263.66 3.000
0.02 0.9032 249.24 2.284
0.03 0.8920 246.13 1.904
0.04 0.8872 244.82 1.616
0.05 0.8861 244.53 1.437
0.06 0.8847 244.12 1.247
0.07 0.8857 244.40 1.161
0.08 0.8926 246.30 1.070
0.09 0.8971 247.55 1.016
0.10 0.9022 248.94 0.980
0.20 0.9043 249.53 0.740
0.50 0.8177 225.65 0.536
1.00 0.7956 219.53 0.432

Table 2: results for Joshua Tree’s earthquake

This results can be summarized on a plot:

17
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Figure 14: Variation of the force damping with damping ratio

4.3 Calculations for the New Hampshire’s earthquake
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F’I‘I‘LQT

& | Ymaz X 103 in em | Fy,4, in N | Amplification ratio Maz (M)
0.01 1.2641 348.81 1.680
0.02 1.1089 305.99 1.475
0.03 1.0134 279.64 1.264
0.04 0.9909 273.43 1.196
0.05 0.9703 267.74 1.104
0.06 0.9179 253.28 1.100
0.07 0.9190 253.58 0.994
0.08 0.8908 245.80 0.960
0.09 0.8611 237.62 0.927
0.10 0.8368 230.91 0.971
0.20 0.6889 190.08 0.874
0.50 0.5876 162.14 0.524
1.00 0.5713 157.63 0.340

Table 3: Results for NH’s earthquake

Armplification factor
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=
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Figure 15: Variation of the force damping with damping ratio
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4.4 Interpreting the results

The general idea here is to be able to determine the force that applies on the
support during an earthquake. From the results and the sketches showed before
one concludes that apart from a puzzling rise around 0.07 % for the Joshua-
Tree earthquake, the amplification of the ground motion is decreasing with the
damping ratio.

We also note that even though the Joshua Tree earthquake was much stronger
in terms of magnitude than the earthquake in New Hampshire, the effects are
relatively close. See figure [L6| for a plot.

35 T T T T T T T T T
—NH
Joshua

Armplification factor

0 0.1 pz 03 04 05 06 0OF 08B 09 1
Damping ratio (fraction of crtical damping)

o 1 1

Figure 16: Maximum amplifications on the support for the two earthquakes

We can make the following comments on the results:

e The two earthquake have the same order of effect on the support even
though the Joshua Tree Earthquake is a 7.1 Richter’s scale earthquake
whereas the NH’s one is only 4.5. But actually they were recorded at
different distance from the epicenter and on different types of rock. The
NH was recorded at 10.8 km, whereas the Joshua Tree at a distance of 48.4
km from the epicenter. If we consider that the seismic wave propagate
only at the surface, than the effect of the seismic wave are divided by

(%)2 ~ 20!

e The NH has a much larger dependance in damping ratio than the Joshua
Tree. This can be explained by looking at the Fourier spectrum on figures

20



and (One should not pay attention to the absolute values of the coef-
ficients which have not been normalized). We can see that the NH spectra
has most of its components around the first natural frequency. Recalling
the simple HO on figure [4] we see that around the natural frequency the
amplification is very sensitive to the damping ratio. On the other hand,
the Joshua Tree spectra is mostly located well below the natural frequency,
where the amplification is less sensitive to the damping.

4.5 Conclusions and comments

One can draw the following conclusion from the results obtained:

e This kind of calculation enables the engineer to choose the right parameter
in order to avoid failure of the component over the life time of the plant.
Given the fact that we do not have data of the cost of damping, it is not
possible to go further and to assess the cost of the damping necessary to
meet the design criteria.

e The choice of the appropriate damping ratio is really dependant on the
site where the plant is to sit.

e This calculation does not introduce any probabilistic concepts, and is thus
conservative in the sense that a relatively larger than expected earthquake
has to be assumed in order to have a security margin

The following probabilistic model, still theoretical and hard to apply, intro-
duces the concepts of probability of failure, cost of failure etc. which can allow
a more coherent and reliable cost-effectiveness assessment.

5 Overview of cost-effectiveness design method

The lack of data, and also the lack of calculation power leads us to switch here
from a numerical case of a modeled pipe with real earthquake pipe to a more
theoretical approach where the purpose is to capture the cost of the deterioration
of the pipe as a function of the damping ratio, and to find the best value of the
damping ratio that would come from a cost-benefit analysis.

This concept of cost-effectiveness design of a nuclear device is a new field of
research. I am presenting here some results from some recent articles ([2] and

[31)-

5.1 Evaluating the probability of occurrence of failure

The first step is to get an idea of the probability at which the component that
we are studying (the pipe), will fail if an earthquake occurs.

21



Defining the component failure In our case the failure means breaking the
pipe. Most of the stresses are concentrated at the edge of the pipe (where the
junction is). At this place, the moment shall not exceed a critical moment M,
that is computed given the properties of the material. The condition of failure
is thus:

M(z=0)orM(z=L) > Mm (16)

Power Density Spectrum The power density is defined as
|F(w)|?
2m
It represents the content in power of the signal (i.e. the accelerograph) with

the frequency. From this PSD, one can easily determine the response spectra
by making a point by point calculation.

Probability of failure knowing an earthquake occurred The next step
is to determine, by using the appropriate PSD (and that is where I start to
lack some data), what is the probability that the ground motion will cause our
component to enter condition (i.e. to fail). In [2], the authors assume
that g is a zero-mean stationary Gaussian process. Sps(w) is defined as the
PSD of the bending moment in the support. It can be obtained by using the
transfer vector function of the moment hj;(w) that transform the acceleration
of the ground into the moments on the supports (this function is easy to find
using the differential equation governing the motion of the beam). We finally
get Sy (w) = |har(w)[2Sy(w). Aslong as the ground acceleration has zero-mean,
than the moment is a Gaussian with zero-mean, and thus its standard deviation
is 02, = fj;o Sy (w)dw.

What is of interest for us is to determine at which rate the moment will cross
M. To obtain this value the authors are using the Rice Formula to compute
the cross rate. A classical result for a Gaussian process is the following:

1 om MZQ-
m 17
vM 2w opm ezp( 2012w ) (17)

Where vy, is the crossing rate of M with M, and o) is the time rate of
the standard deviation oj;.

o]
oM = / w? S (w)dw
— 00

The bottom line of this calculation is that v, is a quantity that is relatively
easy to calculate when one has the PSD.

From the crossing rate, we can assume that the failure event follows a Poisson
distribution. This assumption is very common in hazard events modeling. Thus,
if we assume that an earthquake had occurred, then the probability that we have
r failure during ¢ seconds of an earthquake is:

22



vpt)”
Ppyx=r) = ( A:,) exp(—vat) (18)

With this distribution, we verify that E(X;) = vast which is what we had
expected.

Now, we know that one failure is enough to fail the component, so the
probability of failure is 1 minus the probability of no failure over t i.e.

Ppyyjeqg=1—€e"M" (19)

This probability is evaluated assuming a typical value of 6 to 7 seconds for
t (strong motion duration time). One should note here that this probability is
a function of the damping ratio a through Sj,.

Expected life-cycle cost The notion of expected life-cycle cost is at the very
heart of the cost-effectiveness analysis of our component. The occurrence of an
earthquake is satisfyingly modeled by a Poisson distribution where the mean
value of the random variable v describes the average rate of occurrence of an
earthquake. Then the mean of the real cost over the life time of the plant, or
the expected life-cycle cost E[C(«)] is defined as

E[C(e)] = Caa + cfPf(a)g(l — exp(—Muge)) (20)

Where ;4. is the total life-length of the plant, A is the annual discount rate,
C the marginal cost of o and C'y the cost of failure.

Conclusions on the model This very simple model enables to get a simple
formula of the expected cost that can then be maximized in order to minimize
the expected cost of the pipe. Nevertheless, data such as PSD, and even C\, or
Cy are very hard to obtain and cannot be estimated by a back-of-the-envelope
calculation.

6 Conclusion

As we have seen, some methods exist to assess the cost-effectiveness of nuclear
device system. The major method is a probabilistic method, but it is still a field
of research and is not yet applicable in the Nuclear Industry.

My feeling about this, is that the model is very interesting for minor com-
ponents of the nuclear plant where a failure can be tolerated. But when dealing
with major components, components that are responsible for the safety of the
plant, I think it will be difficult if not impossible to convince the utility man-
agers to go for probabilistic cost-effectiveness design. And in this case, the old
dynamic analysis of the piping system with significant margin is still the major
option.
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