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Lecture 18 (11/20/06) 

Neutron Interactions: Energy and Angular Distributions, Thermal Motions 
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We will use the expressions relating energy and scattering angles derived in the 

previous chapter to determine the energy and angular distributions of an elastically 

scattered neutron. The energy distribution, in particular, is widely used in the analysis of 

neutron energy moderation in systems where neutrons are produced at high energies 

(Mev) by nuclear reactions and slow down to thermal energies.  This is the problem of 

neutron slowing down, where the assumption of the target nucleus being initially at rest is 

justified. When the neutron energy approaches the thermal region (~ 0.025 ev), the 

stationary target assumption is no longer valid.  One can relax this assumption and 

derive a more general distribution which holds for neutron elastic scattering at any 

energy. This then is the result that should be used for the analysis of the spectrum 

(energy distribution) of thermal neutrons, a problem known as neutron thermalization.  

As part of this discussion we will have an opportunity to study the energy dependence of 

the elastic scattering cross section. 

We have seen from our study of cross section calculation using the method of 

phase shift that for low-energy scattering (kro << 1, which is equivalent to neutron 

energies below about 10-100 kev) only s-wave contribution to the cross section is 

important, and moreover, the angular distribution of the scattered neutron is spherically 

symmetric in CMCS. This is the result that we will make use of in deriving the energy 

distribution of the elastically scattered neutron. 
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Energy Distribution of Elastically Scattered Neutrons 

 We define P(Ωc )  as the probability that the scattered neutron will be going in the 

direction of the unit vector Ωc  (recall this is a unit vector in angular space).  We should 

also understand that a more physical way of defining P is to say that 

P(Ωc )dΩc = 	the probability that the neutron will be scattered into an element of

 solid angle dΩc about Ω c 

For s-wave scattering one has therefore 

dΩ
P(Ωc )dΩc = c	 (16.1)

4π 

Notice that P(Ωc )  is a probability distribution in the two angular variables, ϕc and θ c , 
and is properly normalized, 

2π π 

dϕc cosθ dθ c P(Ω ) = 1	 (16.2)∫ ∫  c c 
0 0 

Since there is a one-to-one relation between θ and E3 (cf. (15.13)), we can transformc 

(16.1) to obtain a probability distribution in the outgoing energy, E3. To do this we first 

need to reduce (16.1) from a distribution in two variables to a distribution in the variable 

θ c . Let us define G(θ c ) as the probability of the scattering angle being θ c . This quantity 

can be obtained from (16.1) by simply integrating (16.1) over all values of the azimuthal 

angle ϕc , 

2π 

G(θ c )dθ c = ∫ dϕP(Ωc )sinθ cdθ c	 (16.3) 
0 

= 1 sinθ dθ	 (16.4)
2 c c 
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Now we can write down the transformation from G( θ c ) to the energy distribution in the 

outgoing energy. For the purpose of general discussion our notation system of labeling 

particles as 1 through 4 is not a good choice.  It is more conventional to label the energy 

of the neutron before and after the collision as either E and E’, or vice versa.  We will 

therefore switch notation at this point and let E1 = E and E3 = E’, and denote the 

probability distribution for E’ as F (E → E ' ) . The transformation between G( θ c ) and 

F (E → E ' ) is the same as that for any distribution function, 

F (E → E ' )dE '= G(θ c )dθ c (16.5) 

With G( θ c ) given by (16.4) we obtain 

dθ c (16.6)F (E → E ' ) = G(θ c ) dE ' 

The Jacobian of transformation can be readily evaluated from (15.13) after relabeling E1 
and E3 as E and E’. Thus, 

F (E → E ' ) = 
1 αE ≤ E '≤ E 

E(1−α ) 

           (16.7)

 = 0 otherwise 

The distribution, which is sketched in Fig. 16.1, is so simple that one can understand 

completely all its features.  The distribution is uniform in the interval (α E, E) because 

the scattering is spherically symmetric (independence of scattering angle translates into 

independence of outgoing energy because of the one-to-one correspondence).  The fact 

that the outgoing energy can only lie in a particular interval follows from the range of 

scattering angle (0, π ). Since α  depends on the mass of the target, being zero for 

hydrogen and approaching unity as M >> m, the interval can vary from (0, E) for 

hydrogen to a vanishing value as A >> 1. In other words, the neutron can lose all its 

energy in one collision with hydrogen, and loses practically no energy if it collides with a  
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Fig. 16.1.  Scattering frequency giving the probability that a neutron elastic scattered at 

energy E will have an energy in dE’ about E’. 

very heavy target nucleus.  Although simple, the distribution is quite useful for the 

analysis of neutron energy moderation in the slowing down regime.  It also represents a 

reference behavior for discussing conditions when it is no longer valid to assume the 

scattering is spherically symmetric in CMCS, or to assume the target nucleus is at rest.  

We will come back to these two situations later. 

Notice that F is a distribution, so its dimension is the reciprocal of its argument, 

an energy. F is also properly normalized, its integral over the range of the outgoing 

energy is necessarily unity as required by particle conservation.  Knowing the probability 

distribution F one can construct the energy differential cross section 

dσ s =σ s (E)F (E → E ' ) (16.7)
dE ' 

such that 

dσ
∫ dE ' 

dE
s 

' 
=σ s (E) (16.8) 

which is the ‘total’ (in the sense that it is the integral of a differential) scattering cross 

section. It is important to keep in mind that σ s (E)  is a function of the initial (incoming) 
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neutron energy, whereas the integration in (16.8) is over the final (outgoing) neutron 

energy. The quantity F (E → E ' )  is a distribution in the variable E’ and also a function 

of E.  We can multiply (16.7) by the number density of the target nuclei N to obtain 

Nσ s (E)F (E → E ' ) ≡ Σ s (E → E ' ) (16.9) 

which is sometimes known as the scattering kernel.  As its name suggests, this is the 

quantity that appears in the neutron balance equation for neutron slowing down in an 

absorbing medium, 

E / α 

[Σ s (E) + Σ a (E)]φ(E) = ∫ dE 'Σ s (E '→ E)φ(E ' ) (16.10) 
E 

where φ(E) = vn(E)  is the neutron flux and n(E) is the neutron number density.  

Eq.(16.10) is an example of the usefulness of the energy differential scattering cross 

section (16.7). 

The scattering distribution F (E → E ' )  can be used to calculate various energy-

averaged quantities pertaining to elastic scattering.  For example, the average loss for a 

collision at energy E is 

E E
∫ dE ' (E − E ' )F (E → E ' ) = (1 −α ) (16.11)

2αE 

For hydrogen the energy loss in a collision is one-half its energy before the collision, 

whereas for a heavy nucleus it is ~ 2E/A. 

Angular Distribution of Elastically Scattered Neutrons 

We have already made use of the fact that for s-wave scattering the angular 

distribution is spherically symmetric in CMCS.  This means that the angular differential 

scattering cross section in CMCS if of the form 

5 



dσ 1s =σ (θ ) ≡σ (E) (16.12)
dΩ s c s 4πc 

One can ask what is the angular differential scattering cross section in LCS?  The answer 

can be obtained by transforming the results (16.12) from a distribution in the unit vector 

Ω c to a distribution in Ω . As before (cf. (16.5)) we write 

σ s (θ )dΩ =σ s (θ c )dΩ c (16.13) 

sinθ dθ 
or σ s (θ ) =σ s (θ c ) 

c c (16.14)
sinθ dθ 

From the relation between cosθ  and cosθ , (15.15), we can calculate c 

d (cosθ ) 
= 

sinθ c dθ c 

d (cosθ c ) sinθdθ 

Thus 

σ s (E) (γ 2 + 2γ cosθ c + 1)3 / 2 

σ s (θ ) =  (16.15)
4π 1 + γ cosθ c 

with γ  = 1/A. Since (16.15) is a function of θ , the factor cosθ c on the right hand side 

should be expressed in terms of cosθ  in accordance with (15.15). The angular 

distribution in LCS, as given by (16.15), is somewhat too complicated to sketch simply.  

From the relation between LCS and CMCS indicated in Fig. 15.2, we can expect that if 

the distribution is isotropic in LCS, then the distribution in CMCS should be peaked in 

the forward direction (simply because the scattering angle in LCS is always less than the 

angle in CMCS).  One way to demonstrate that this is indeed the case is to calculate the 

average value of µ = cosθ , 
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1 1 

∫ dΩ cosθσ s (θ ) 
−
∫ 
1 

dµµσ s (µ) 
−
∫ 
1 

dµc µ(µ c )σ s (µc ) 2 µ = = = = (16.16)
∫ dΩσ s (θ ) 

∫ 
1 

dµσ s (µ) ∫ 
1 

dµcσ s (µc )
3A 

−1 −1 

The fact that µ  > 0 means that the angular distribution is peaked in the forward direction.  

This bias becomes less pronounced the heavier the target mass; for A >> 1 the distinction 

between LCS and CMCS vanishes. 

Assumptions in Deriving F (E → E ' ) 

In arriving at the scattering distribution (also sometimes called the scattering 

frequency), (16.7), we have made use of three assumptions, namely, 

(i) elastic scattering 

(ii) target nucleus at rest 

(iii) scattering is isotropic in CMCS (s-wave) 

These assumptions imply certain restrictions pertaining to the energy of incoming 

neutron E and the temperature of the scattering medium.  Assumption (i) is valid 

provided the neutron energy is not high enough to excite the nuclear levels of the 

compound nucleus formed by the target nucleus plus the incoming neutron.  On the other 

hand, if the neutron energy is high enough  to excite the first nuclear energy level above 

the ground state, then inelastic scattering becomes energetically possible,  Inelastic 

scattering is a threshold reaction (Q < 0), it can occur in heavy nuclei at E ~ 0.05 – 0.1 

Mev, or in medium nuclei at ~ 0.1 – 0.2 Mev.  Typically the cross section for inelastic 

scattering, σ (n,n') , is of the order of 1 barn or less.  In comparison with elastic 

scattering, which is always present no matter what other reactions can take place and is of 

order 5 – 10 barns except in the case of hydrogen where it is 20 barns as we have 

previously discussed. 

Assumption (ii) is valid when the neutron energy is large compared to the kinetic 

energy of the target nucleus, typically taken to be kBT assuming the medium is in 

equilibrium at temperature T.  This would be the case for neutron energies ~ 0.1 ev and 

above. When the incident neutron energy is comparable to the energy of the target 
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nucleus, the assumption of stationary target is clearly invalid.  To take into account the 

thermal motions of the target, one should know what is the state of the target since the 

nuclear (atomic) motions in solids are different from those in liquids, vibrations in the 

former and diffusion in the latter.  If we assume the scattering medium can be treated as 

a gas at temperature T, then the target nucleus moves in a straight line with a speed that is 

given by the Maxwellian distribution. In this case one can derive the scattering 

distribution which is an extension of (16.7) [see, for example, G. I. Bell and S. Glasstone, 

Nuclear Reactor Theory (Van Nostrand reinhold, New York 1970), p. 336].  We do not 

go into the details here except to show the qualitative behavior in Fig. 16.2.  From the 

way the scattering distribution changes with incoming energy E one can get a good 

intuitive feeling for how the more general F (E → E ' )  evolves from a spread-out 

distribution (the curves for E = kBT) to the more restricted form given by (16.7). 

Fig. 16.2.  Energy distribution of elastically scattered neutrons in a gas of nuclei with 

mass A = M/m at temperature T.  (from Bell and Glasstone) 

Notice that for E ~ kBT there can be appreciable upscattering which is not possible when 

assumption (ii) is invoked.  As E becomes larger compared to kBT, upscattering becomes 

less important.  The condition of stationary nucleus also means that E >> kBT. 

When thermal motions have to be taken into account, the scattering cross section 

σ s (E)  is also changed; it is no longer a constant, 4πa2 , where a  is the scattering length.  

This occurs in the energy region of neutron thermalization; it covers the range (0, 0.1 - 
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0.5 ev). We will now discuss the energy dependence of σ s (E) . For the case of the 

scattering medium being a gas of atoms with mass A and at temperature T, it is still 

relatively straightforward to work out the expression forσ s (E) . We will give the 

essential steps to give the student some feeling for the kind of analysis that one can carry 

out even for more complicated situations such as neutron elastically in solids and liquids. 

Energy Dependence of Scattering Cross Section σ s (E) 

When the target nucleus is not at rest, one can write down the expression for the 

elastic scattering cross section measured in the laboratory (we will call it the measured 

cross section), 

vσ (v) = ∫d 3V v −V σ theo ( v −V )P(V ,T ) (16.17)meas 

where v  is the neutron speed in LCS, V  is the target nucleus velocity in LCS, σ theo  is the 

scattering cross section we calculate theoretically, such as what we had previously 

studied using the phase-shift method and solving the wave equation for an effective one-

body problem (notice that the result is a function of the relative speed between neutron 

and target nucleus), and P is the thermal distribution of the target nucleus velocity which 

depends on the temperature of the medium.  Eq.(16.17) is a general relation between 

what is calculated theoretically, in solving the effective one-body problem, and what is 

measured in the laboratory where one necessarily has only an average over all possible 

target nucleus velocities.  What we call the scattering cross section σ s (E) we mean 

σ meas . It turns out that we can reduce (16.17) further by using for P the Maxwellian 

distribution and obtain the result 

σ s (v) = σ so 
2 ⎢
⎡
⎜
⎛β 2 + 

1 
⎟
⎞erf (β ) + 

1 βe−β 2 

⎥
⎤ (16.18)

β ⎣⎝ 2 ⎠ π ⎦ 

where erf (x)  is the error function integral 
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2

erf (x) =	
2 
∫ 
x 

dte−t (16.19)
π 0 

and β 2 = AE / kBT , and E = mv2 / 2 . Given that the error function has the limiting 

behavior for small and large arguments, 

erf (x) ~ 2 (x − 
x3 

+ ...) x << 1 
π 3 

           (16.20)  

1− 
e− x2 

⎛
⎜1− 

1
2 + ... ⎞⎟ x >> 1 

x π ⎝ 2x ⎠ 

we have the two limiting  behavior, 

σ s (v) ~ σ so / v β << 1	 (16.21) 

σ s (v) ~ σ so β >>1	  (16.22) 

The physical significance of this calculation is that one sees the elastic scattering cross 

section has a 1/v behavior at low energy (or high temperature) and a constant behavior at 

high energy.  The expression (16.18) is therefore a useful expression giving the energy 

variation of the scattering cross section over the entire energy range from thermal to Mev, 

so far as elastic scattering is concerned.  Note that this result has been obtained by 

assuming the target nuclei move as in a gas of noninteracting atoms.  This assumption is 

not realistic when the scattering medium is a solid or a liquid.  For these situations one 

can also work out the expressions for the cross section, but the results are more 

complicated (and beyond the scope of this course).  We will therefore settle for a brief, 

qualitative look at what new features can be seen in the energy dependence of the elastic 

scattering cross sections of typical solids (crystals) and liquids. 
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Fig. 16.3 shows the total and elastic scattering cross sections of graphite (C12) 

over the entire energy range of interest to this class.  At the very low-energy end we see a 

number of features we have not discussed previously.  These all have to do with the fact 

that the target nucleus (atom) is bound to a crystal lattice and therefore the positions of 

the nuclei are fixed to well-defined lattice sites and the atomic motions are small-

amplitude vibrations about these sites.  There is a sharp drop of the cross section below 

an energy marked Bragg cutoff.  Cutoff here refers to Bragg reflection which occurs 

when the condition for constructive interference (reflection) is satisfied, a condition that 

depends on the wavelength of the neutron (hence its energy) and the spacing between the 

lattice planes in the crystal.  When the wavelength is too long (energies below the cutoff) 

for the Bragg condition to be satisfied, the cross section drops sharply.  What is then left 

is the interaction between the neutron and the vibrational motions of the nuclei, this 

process involves the transfer of energy from the vibrations to the neutron which has much 

lower energy.  Since there is more excitation of the vibrational modes at higher 

temperatures, this is reason why the cross section below the Bragg cutoff is very sensitive 

to temperature, increasing with increasing T. 

Above the Bragg cutoff the cross section shows some oscillations.  These 

correspond to the onset of additional reflections by planes which have smaller lattice 

spacings. At energies around kBT the cross section approaches a constant value up to ~ 

0.3 Mev. This is the region where our previous calculation of cross section would apply.  

Between 0.3 and 1 Mev the scattering cross section decreases gradually, a behavior 

which we can still understand using simple theory (beyond what we had discussed).  

Above 1 Mev one sees scattering resonances, which we have not yet discussed; also there 

is now a difference between total and scattering cross sections (which should be 

attributed to absorption). 
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Fig. 16.3.  Total and elastic scattering cross sections of C12 in the form of graphite.  (from 

Lamarsh). 

Fig. 16.4 shows the measured total cross section of H2O in the form of water.  The 

cross section is the sum of contributions from two hydrogen and an oxygen.  Compared 

to Fig. 16.3 the low-energy behavior here is quite different.  This is not unexpected since 

a crystal and a liquid are really very different with regard to their atomic structure and 

atomic motions.  In the case of the liquid the cross section rises from a constant value at 

energies above 1 ev in a manner like the 1/v behavior given by (16.21).  Notice that the 

constant value of about 45 barns is just what we know from the hydrogen cross section 

σ so  of 20 barns per hydrogen and a cross section of about 5 barns for oxygen.      
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Fig. 16.4.  Total cross section of water.  (from Lamarsh) 

The importance of hydrogen (water) in neutron scattering has led to another interpretation 

of the rise of the cross section with decreasing neutron energy, one which focuses on the 

effect of chemical binding.  The idea is that at high energies (relative to thermal) the 

neutron does not see the water molecule.  Instead it sees only the individual nuclei as 

targets which are free-standing and essentially at rest.  In this energy range (1 ev and 

above) the interaction is the same as that between a neutron and free protons and oxygen 

nuclei. This is why the cross section is just the sum of the individual contributions.  

When the cross section starts to rise as the energy decreases, this is an indication that the 

chemical binding of the protons and oxygen in a water molecule starts to have an effect. 

When the neutron energy is at kBT the neutron now sees the entire water molecule rather 

than the individual nuclei.  In that case the scattering is effectively between a neutron 

and a water molecule.  What this means is that as the neutron energy decreases the target 

changes from individual nuclei with their individual mass to a water molecule with mass 

18. Now one can show the scattering cross section is actually proportional to the square 

of the reduced mass of the scatterer µ , 

σ s ∝ µ 2 = ⎜
⎛ mM 

⎟
⎞

2 

= ⎜
⎛ A 

⎟
⎞

2 

(16.23)
⎝ m + M ⎠ ⎝ A +1⎠ 
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One can define a free-atom cross section appropriate for the energy range where the cross 

section is a constant, and a bound-atom cross section for the energy range where the cross 

section is rising, with the relation 

⎛ A ⎞
2 

σ free =σ bound ⎜ ⎟ (16.24)
⎝ A +1⎠ 

For hydrogen these two cross sections would have the values of 20 barns and 80 barns 

respectively. 

We close this chapter with a brief consideration of assumption (iii) used in 

deriving (16.7). When the neutron energy is in the 10 Kev range and higher, the 

contributions from the higher angular momentum (p-wave and above) scattering may 

become significant.  In that case we know the angular distribution will be more forward 

peaked. This means one should replace (16.1) by a different form of P(Ωc ) . Without 

going through any more details, we show in Fig. 16.5 the general behavior that one can 

expect in the scattering distribution F when scattering in CMCS is no longer isotropic.  

Fig. 16.5.  Energy distribution of elastically scattered neutrons by a stationary nucleus.  

(from Lamarsh) 
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