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22.101 Applied Nuclear Physics (Fall 2006) 

Lecture 14 (11/1/06) 

Charged-Particle Interactions:  Stopping Power, Collisions and Ionization 
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When a swift charged particle enters a materials medium it interacts with the 

electrons and nuclei in the medium and begins to lose energy as it penetrates into the 

material.  The interactions can be thought of as individual collisions between the charged 

particle and the atomic electrons surrounding a nucleus or the nucleus itself (considered 

separately).  The energy given off during these collisions will result in ionization, the 

production of ion-electron pairs, in the medium; also it can appear in the form of 

electromagnetic radiation, a process known as bremsstrahlung (braking radiation). We 

are interested in describing the energy loss per unit distance traveled by the charged 

particle, and the range of the particle in various materials.  The range is defined as the 

distance traveled from the point of entry to the point of essentially coming to rest. 

A charged particle is called ‘heavy’ if its rest mass is large compared to the rest 

mass of the electron.  Thus, mesons, protons, α -particles, and of course fission 

fragments, are all heavy charged particles.  By the same token, electrons and positrons 

are ‘light’ particles. 

If we ignore nuclear forces and consider only the interactions arising from 

Coulomb forces, then we can speak of four principal types of charged-particle 

interactions: 

(i)	 Inelastic Collision with Atomic Electrons.  This is the principal process of 

energy transfer, particularly if the particle velocity is below the level 

where bremsstrahlung is significant.  It leads to the excitation of the 

atomic electrons (still bound to the nucleus) and to ionization (electron 

stripped off the nucleus).  Inelastic here refers to the excitation of 

electronic levels. 
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(ii)	 Inelastic Collision with a Nucleus.  This process can leave the nucleus in 

an excited state or the particle can radiate (bremsstrahlung). 

(iii)	 Elastic Collision with a Nucleus. This process is known as Rutherford 

scattering. There is no excitation of the nucleus, nor emission of radiation.  

The particle loses energy only through the recoil of the nucleus. 

(iv)	 Elastic Collision with Atomic Electrons.  The process is elastic deflection 

which results in a small amount of energy transfer.  It is significant only 

for charged particles that are low-energy electrons. 

In general, interaction of type (i), which is sometimes simply called collision, is 

the dominant process of energy loss, unless the charged particle has a kinetic energy 

exceeding its rest mass energy, in which case the radiation process, type (ii), becomes 

important.  For heavy particles, radiation occurs only at such kinetic energies, ~ 103 Mev, 

that it is of no practical interest to nuclear engineers.  The characteristic behavior of 

electron and proton energy loss in a high-Z medium like lead is shown in Fig. 13.1 

[Meyerhof Fig. 3.7]. This is an important result to keep in mind for the discussions to 

follow. 

Fig. 13.1.   Stopping power (vertical axis in units of Mev/g-cm2) showing the 

contributions from collisions and radiation. 

Stopping Power: Energy Loss of Charged Particles in Matter 
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The kinetic energy loss per unit distance suffered by a charged particle, to be 

denoted as –dT/dx, is conventionally known as the stopping power. This is a positive 

quantity since dT/dx is <0. There are quantum mechanical as well as classical theories 

for calculating this basic quantity. One wants to express –dT/dx in terms of the 

properties specifying the incident charged particle, such as its velocity v and charge ze, 

and the properties pertaining to the atomic medium, the charge of the atomic nucleus Ze, 

the density of atoms n, and the average ionization potential I . 

We consider only a crude, approximate derivation of the formula for –dT/dx.  We 

begin with an estimate of the energy loss suffered by an incident charged particle when it 

interacts with a free and initially stationary electron.  Referring to a collision cylinder 

whose radius is the impact parameter b and whose length is the small distance traveled dx 

shown in Fig. 13.2 [Meyerhof Fig. 3-1], we see that the net momentum transferred to the  

Fig. 13.2.  Collision cylinder for deriving the energy loss to an atomic electron by an 

incident charged particle. 

electron as the particle moves from one end of the cylinder to the other end is essentially 

entirely directed in the perpendicular direction (because Fx changes sign, so the net 

momentum along the horizontal direction vanishes) along the negative y-axis.  So we 

write 

∫ dtFx (t) ≈ 0     (13.1)  
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pe = ∫ dtFy (t) 

ze2 b dx = ∫ x 2 + b2 (x 2 + b2 )1/ 2 v 

ze2b ∞ dx 2ze2 

≅ = (13.2)
vbv −

∫
∞(x 2 + b2 )3 / 2 

The kinetic energy transferred to the electron is therefore 

pe 
2 

=
2(ze2 )2 

(13.3)
2m m b2 v 2 

e e 

If we assume this is equal to the energy loss of the charged particle, then multiplying 

(13.3) by nZ (2πbdbdx) , the number of electrons in the collision cylinder, we obtain 

dT bmax 2 ⎛ ze2 ⎞
2 

− 
dx 

= 
bmin 

∫ nZ 2πbdb 
me 

⎜⎜
⎝ vb ⎟

⎟
⎠ 

= 4π (ze2 )
2

2 nZ 
ln 
⎛
⎜⎜ 

bmax ⎞
⎟⎟ (13.4)

mev ⎝ bmin ⎠ 

where bmax and bmin are the maximum and minimum impact parameters which one should 

specify according to the physical description he wishes to treat. 

In reality the atomic electrons are of course not free electrons, so the charged 

particle must transfer at least an amount of energy equal to the first excited state of the 

atom.  If we take the time interval of energy transfer to be ∆t ≈ b / v , then (∆t)max ~ 1/ν , 

where hν ≈ I  is the mean ionization potential.  This gives an estimate of the maximum 

impact parameter, 
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bmax ≈ hv / I (13.5) 

An empirical expression for I  is I ≈ kZ , with k ~ 19 ev for H and ~ 10 ev for Pb. Next 

we estimate bmin by using the uncertainty principle to say that the electron position cannot 

be specified more precisely than its de Broglie wavelength (in the relative coordinate 

system of the electron and the charged particle).  Since electron momentum in the relative 

coordinate system is mev , we have 

bmin ≈ h / mev (13.6) 

Combining these two estimates we obtain 

− 
dT 

= 
4πz 2e4

2 

nZ 
ln⎜⎜
⎛ 2mev

2 

⎟⎟
⎞ 

(13.7)
dx mev ⎝ I ⎠ 

In (13.7) we have inserted a factor of 2 in the argument of the logarithm, this is to make 

our formula agree with the result of quantum mechanical calculation which was first 

carried out by H. Bethe using the Born approximation. 

Eq.(13.7) describes the energy loss due to particle collisions in the nonrelativistic 

regime.  One can include relativistic effects by replacing the logarithm by 

eln⎜⎜
⎛

⎝ 

2m
I 

v 2 

⎟⎟
⎞

⎠ 
− ln⎜⎜

⎛

⎝ 
1− 

v
c 2

2 

⎟⎟
⎞

⎠ 
− 

v
c 2

2 

This correction can be important in the case of electrons and positrons. 

Eq.(13.7) is a relatively simple expression, yet one can gain much insight into the 

factors that govern the energy loss of a charged particle by collisions with the atomic 

electrons. We can see why the usual neglect of the contributions due to collisions with 

nuclei is justified.  In a collision with a nucleus the stopping power would increase by a 
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factor Z, because of the charge of the target with which the incident charged particle is 

colliding, and decrease by a factor of me/M(Z), where M(Z) is the mass of the atomic 

nucleus. The decrease is a result of the larger mass of the recoiling target.  Since Z is 

always less than 102 whereas M(Z) is at least a factor 2 x 103 greater than me, the mass 

factor always dominates over the charge factor.  Another useful observation is that (13.7) 

is independent of the mass of the incident charged particle.  This means that 

nonrelativistic electrons and protons of the same velocity would lose energy at the same 

rate, or equivalently the stopper power of a proton at energy T is about the same as that of 

an electron at energy ~ T/2000.  That this scaling is more or less correct can be seen in 

Fig. 13.1. 

Fig. 13.3 shows an experimentally determined energy loss curve (stopping power) 

for a heavy charged particle (proton), on two energy scales, an expanded low-energy 

region where the stopping power decreases smoothly with increasing kinetic energy of 

the charged particle T below a certain peak centered about 0.1 Mev, and a more 

compressed high-energy region where the stopping power reaches a broad minimum 

around 103 Mev. Notice also a slight upturn as one goes to higher energies past the broad 

minimum which we expect is associated with relativistic corrections.  One should regard 

Fig. 13.3 as the extension, at both ends of the energy, of the curve for proton in Fig. 13.1.  
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⎜
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Fig. 13.3.  The experimentally determined stopping power, (-dT/dx), for protons in air, 

(a) low-energy region where the Bethe formula applies down to T ~ 0.3 Mev with I  ~ 80 

ev. Below this range charge loss due to electron capture causes the stopper power to 

reach a peak and start to decrease (see also Fig. 13.4 below), (b) high-energy region 

where a broad minimum occurs at T ~ 1500 Mev.  [from Meyerhof] 

Experimentally, collisional energy loss is measured through the number of ion pairs 

formed along the trajectory path of the charged particle.  Suppose a heavy charged 

particle loses on the average an amount of energy W in producing an ion pair, an electron 

and an ion. Then the number of ion pairs produced per unit path is  

⎛−
1
 dT ⎞

⎟
⎠


i =
 (13.8)

W
 dx 

We will say more about the energy W in the next lecture. 7 

0
0

100

200

300

400

500

600

700

0.1 0.2 0.3 0.4

En
er

gy
 L

os
s

0.5 0.6 0.7 0.8 0.9 1.0

-
, M

ev
/g

m
 c

m
-2

 a
ir

dT ρd
x

Proton energy (T), Mev

Air

(a)

102 103 
Proton energy (T), Mev

1

2

3

4

5

6

7

En
er

gy
 L

os
s

104 

-
, M

ev
/g

m
 c

m
-2

 a
ir

dT ρd
x

Air
(b)

Figure by MIT OCW. Adapted from Meyerhof.



Eq.(13.7) is valid only in a certain energy range because of the assumptions we have 

made in its derivation.  We have seen from Figs. 13.1 and 13.3 that the atomic stopping 

power varies with energy in the manner sketched below.  In the intermediate  

Fig. 13.4.  Schematic of overall behavior of stopping power of a charged particle with 

rest mass M. 

energy region, 500I < T ≤ Mc2 , where M is the mass of the charged particle, the 

stopping power behaves like 1/T, which is roughly what is predicted by (13.7).  In this 

region the relativistic correction is small and the logarithm factor varies slowly.  At 

higher energies the logarithm factor along with the relativistic correction terms give rise 

to a gradual increase so that a broad minimum is set up in the neighborhood of ~ 3 Mc2. 

At energies below the maximum in the stopping power, T < 500I , Eq.(13.7) is not valid 

because the charged particle is moving slow enough to capture electrons and begin to lose 

its charge. Fig. 13.5 [Meyerhof Fig. 3-3] shows the correlation between the mean charge  
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Fig. 13.5.  Loss of charge with speed as a charged particle slows down. 

of a charged particle and its velocity.  This is a difficult region to analyze theoretically.  

For α -particles and protons the range begins at ~ 1 Mev and 0.1 Mev respectively [H. A. 

Bethe and J. Ashkin, “Passage of Radiation Through Matter”, in Experimental Nuclear 

Physics, E. Segrè, ed (Wiley, New York, 1953), Vol. I, p.166].  

Eq.(13.7) is generally known as the Bethe formula.  It is a quantum mechanical 

result derived on the basis of the Born approximation which is essentially an assumption 

of weak scattering [E. J. Williams, Rev. Mod. Phys. 17, 217 (1945)]. The result is valid 

provided 

ze2 ⎛ e2 ⎞ z z 
= ⎜⎜ ⎟⎟ = << 1 (13.9)

hv ⎝ hc ⎠ v / c 137(v / c) 

On the other hand, Bohr has used classical theory to derive a somewhat similar 

expression for the stopping power, 

− ⎛⎜ 
dT ⎞

⎟ = 
4πz 2 e4

2 

nZ 
ln 
⎡
⎢ 2 

Mhv 2mev
2 ⎤
⎥ (13.10)

⎝ dx ⎠class mev ⎣2ze (me + M ) I ⎦ 

which holds if 9 
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2ze >> 1 (13.11)
hv 

Thus (13.7) and the classical formula apply under opposite conditions.  Notice that the 

two expressions agree when the arguments of the logarithms are equal, that is, 

2ze2 / hv = 1, which is another way of saying that their regions of validity do not overlap.  

According to Evans (p. 584), the error of either approximation tends to be an 

overestimate, so the expression that gives the smaller energy loss is likely to be the more 

correct. This turns out to be the classical expression when z > 137(v/c), and (13.7) when 

2z < 137(v/c). Knowing the charge of the incident particle and its velocity, one can use 

this criterion to choose the appropriate stopper power formula.  In the case of fission 

fragments (high Z nuclides) the classical result should be used.  Also, it should be noted 

that a quantum mechanical theory has been developed by Bloch that gives the Bohr and 

Bethe results as limiting cases. 

The Bethe formula,(13.7), is appropriate for heavy charged particles.  For fast 

electrons (relativistic) one should use 

dT 2πe4 nZ ⎡ ⎛ mev
2T ⎞ 2 ⎤ − 

dx 
= 

mev
2 ⎢

⎢⎣ 
ln⎜⎜
⎝ I 

2 (1− β 2 ) ⎟
⎟
⎠
− β ⎥

⎥⎦ 
(13.12) 

where β = v / c . For further discussions see Evans. 
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