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22.101 Applied Nuclear Physics (Fall 2006) 
Lecture 6 (9/27/06) 

The Neutron-Proton System: Bound State of the Deuteron 

References – 
W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967), App. A. 
B. L. Cohen, Concepts of Nuclear Physics (McGraw-Hill, New. York, 1971), chap. 3. 

“The investigation of this nuclear force has turned out to be a truly monumental 

task: Perhaps more man-hours of work have been devoted to it than any other scientific 

question in the history of mankind” – B. L. Cohen, Concepts of Nuclear Physics, p. 32. 

A direct way to gain some appreciation of the essential nature of nuclear force for our 

purposes is to consider the simplest possible nucleus, the two-nucleon system of the 

deuteron H2 nucleus which is composed of a neturon and a proton.  We will discuss two 

properties of this system using elementary quantum mechanics, the bound state of the 

nucleus (this lecture) and the scattering of a neutron by a proton (next lecture).  The 

former problem is an application of our study of bound states in three-dimensions, while 

the latter is a new application of solving the time-independent Schrödinger wave 

equation. From these two problems a number of fundamental features of the nuclear 

potential will emerge. 

Bound State of the Deuteron 

The deuteron is the only stable bound system of two nucleons – neither the di-neutron nor 

the di-proton are stable. Experimentally it is known that the deuteron exists in a bound 

state of energy 2.23 Mev. This energy is the energy of a gamma ray given off in the 

reaction where a thermal neutron is absorbed by a hydrogen nucleus, 

n + H 1 → H 2 + γ (2.23 Mev) 
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The inverse reaction of using electrons of known energy to produce external 

bremsstrahlung for (γ , n) reaction on H2 also has been studied. Besides the ground state 

no stable excited states of H2 have been found; however, there is a virtual state at ~ 2.30 

Mev. 

Suppose we combine the information on the bound-state energy of the deuteron 

with the bound-state solutions to the wave equation to see what we can learn about the 

potential well for neutron-proton interaction.  Again we will assume the interaction 

between the two nucleons is of the form of a spherical well, 

V (r) = −Vo r < ro

 = 0 r > ro 

We ask what is the energy level structure and what values should Vo and ro take in order 

to be consistent with a bound state at energy EB = 2.23 Mev. 

There is good reason to believe that the deuteron ground state is primarily 1s 

(n=1, l =0). First, the lowest energy state in practically all the model potentials is an s-

state. Secondly, the magnetic moment of H2 is approximately the sum of the proton and 

the neturon moments, indicating that s n and s p  are parallel and no orbital motion of the 

proton relative to the neutron. This is also consistent with the total angular momentum of 

the ground state being I = 1. 

We therefore proceed by considering only the l  = 0 radial wave equation, 

− 
h d 2u(r) 

+ V (r)u(r) = Eu(r) (6.1)
m dr 2 

where E = - EB, and m is the neutron (or proton) mass.  In view of our previous 

discussions of bound-state calculations we can readily write down the interior and 

exterior solutions, 
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u(r) = Asin Kr K = [m(Vo − EB )]
1/ 2 / h r < ro (6.2) 

u(r) = Be−κr κ = mEB / h r >  ro (6.3) 

Applying the boundary condition at the interface, we obtain the relation between the 

potential well parameters, depth and width, and the bound-state energy EB, 

⎛Vo − EB ⎞
1/ 2 

K cot Kro = −κ , or tan Kro = −⎜⎜ ⎟⎟ (6.4)
⎝ EB ⎠ 

To go further we can consider either numerical or graphical solutions as discussed before, 

or approximations based on some special properties of the nuclear potential.  Let us 

consider the latter option. 

Suppose we take the potential well to be deep, that is, Vo >> EB, then the RHS 

(right hand side) of (6.4) is large and we get an approximate value for the argument of the 

tangent, 

Kro ~ π / 2       (6.5)  

Then, 

K ~ mVo / h ~ π / 2ro 

2 ⎛π ⎞
2 
h 2 

or Voro ~ ⎜ ⎟ ~ 1 Mev-barn (6.6)
⎝ 2 ⎠ m 

We see that a knowledge of EB allows us to determine the product of Voro 
2 , and not Vo 

and ro separately.  From a study of neutron scattering by a proton which we will discuss 

in the next chapter, we will find that ro ~ 2F. Putting this into (6.6) we get Vo ~ 36 Mev, 
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which justifies our taking Vo to be large compared to EB. A sketch of the nuclear 

potential deduced from our calculation is shown in Fig. 1. 

Fig. 1.  The nuclear potential for the neutron-proton system in the form of a spherical 

well of depth Vo and width ro. EB is the bound-state energy of the deuteron. 

We notice that since the interior wave function, sinKr, must match the exterior 

wave function, exp(−κr) , at the interface, the quantity Kro must be slightly greater than 

π / 2  (a more accurate estimate gives 116o instead of 90o). If we write 

K = 2π / λ ~ π / 2ro

then the ‘effective wavelength’ λ  is approximately 4F, which suggests that much of the 

wave function is not in the interior region. The relaxation constant, or decay length, in 

the interior region can be estimated as 

1 h 
= ~ 4.3 F

κ mEB 

This means that the two nucleons in H2 spend a large fraction of their time at r > ro, the 

region of negative kinetic energy that is classically forbidden.  We can calculate the root-

mean-square radius of the deuteron wave function, 
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∞ 

2 ∫ d 3rr 2 R 2 (r) ∫ 
0 

r 2 drr 2 R 2 (r) 
Rrms = 

3 2 
= ∞ 

(6.7)
∫ d rR (r) 

∫ r 2 drR 2 (r) 
0 

If we take R(r) ~ e−κr for all r (this should result in an overestimate), we would obtain 

R 2 = 
h 

= 3Frms 2mEB 

This value can be compared with the estimate of nuclear radius based on the mass 

number, 

(radius)2 ~ (1.4xA1/3)2 ~ 3.1 F, or (1.2xA1/3)2 ~ 2.3 F 
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