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Barrier Penetration 
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We have previously observed that one can look for different types of solutions to 

the wave equation.  An application which will turn out to be useful for later discussion of 

nuclear decay by α -particle emission is the problem of barrier penetration.  In this case 

one looks for positive-energy solutions as in a scattering problem.  We consider a one-

dimensional system where a particle with mass m and energy E is incident upon a 

potential barrier with width L and height Vo (Vo is greater than E). Fig. 1 shows that with 

the particle approaching from the left, the problem separates into three regions, left of the 

barrier (region I), inside the barrier (region II), and right of the barrier (region III). 

Fig. 1.  Particle with energy E penetrating a square barrier of height Vo (Vo > E) and 

width L. 

In regions I and III the potential is zero, so the wave equation (3.1) is of the form 

d 2ψ (x) 
+ k 2ψ (x) = 0 , k 2 = 2mE / h 2 (5.1)

dx 2 

where k2 is positive.  The wave functions in these two regions are therefore 
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ψ 1 = a1e
ikx + b1e

−ikx ≡ψ 1→ +ψ 1← (5.2) 

ψ 3 = a3e
ikx + b3e

−ikx ≡ψ 3→ (5.3) 

where we have set b3 = 0 by imposing the boundary condition that there is no particle in 

region III traveling to the left (since there is nothing in this region that can reflect the 

particle). In contrast, in region I we allow for reflection of the incident particle by the 

barrier; this means b1 will be nonzero.  The subscripts →  and ←  denote the wave 

functions traveling to the right and to the left respectively. 

In region II, the wave equation is 

d 2ψ (x) 
−κ 2ψ (x) = 0 , κ 2 = 2m(Vo − E) / h 2 (5.4)

dx 2 

So we write the solution in the form 

ψ 2 = a2eκx + b2e−κx (5.5) 

Notice that in region II the kinetic energy, E – Vo, is negative, so the wavenumber is 

imaginary in a propagating wave (another way of saying the wave function is 

monotonically decaying rather than oscillatory). What this means is there is no wave-like 

solution in this region. By introducing κ  we can think of it as the wavenumber of a 

hypothetical particle whose kinetic energy is positive, Vo – E. 

Having obtained the wave function in all three regions we proceed to discuss how 

to organize this information into a useful form, namely, the transmission and reflection 

coefficients.  We recall that given the wave function ψ , we know immediately the 

particle density (number of particles per unit volume, or the probability of the finding the 
2particle in an element of volume d3r about r), ψ (r) , and the net current, given by (2.24), 

j = 
h (ψ *∇ψ −ψ∇ψ *)     (5.6)  

2mi 
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Using the wave functions in regions I and III we obtain 

2 2j1 (x) = v[a − ]     (5.7)  1 b1 

2      (5.8)  j3 (x) = v a3 

where v = hk / m  is the particle speed.  We see from (5.7) that j1 is the net current in 

region I, the difference between the current going to the right and that going to the left.  

Also, in region III there is only the current going to the right.  Notice that current is like a 

flux in that it has the dimension of number of particles per unit area per second.  This is 
2 2consistent with (5.7) and (5.8) since a  and b  are particle densities with the dimension 

of number of particles per unit volume.  From here on we can regard a1, b1, and a3 as the 

amplitudes of the incident, reflected, and transmitted waves, respectively.  With this 

interpretation we define 

2 2 
a3 b1T = , R =  (5.9)
a1 a1 

Since particles cannot be absorbed or created in region II and there is no reflection in 

region III, the net current in region I must be equal to the net current in region III, or j1 = 

j3. It then follows that the condition 

T + R = 1     (5.10)  

is always satisfied (as one would expect). The transmission coefficient is sometimes also 

called the Penetration Factor and denoted as P. 

To calculate a1 and a3, we apply the boundary conditions at the interfaces, x = 0 

and x = L, 

ψ 1 =ψ 2  , dψ 1 =
dψ 2  x = 0 (5.11)

dx dx 
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ψ 2 =ψ 3  , dψ 2 =
dψ 3  x = L (5.12)

dx dx 

These 4 conditions allow us to eliminate 3 of the 5 integration constants.  For the purpose 

of calculating the transmission coefficient we need to keep a1 and a3. Thus we will 

eliminate b1, a2, and b2 and in the process arrive at the ratio of a1 to a3 (after about a page 

of algebra), 

a1 = e (ik −κ ) L 
⎢
⎡1 

− 
i 
⎜
⎛κ 

− 
k 
⎟
⎞
⎥
⎤ 
+ e (ik +κ ) L 

⎢
⎡1 

+ 
i 
⎜
⎛κ 

− 
k 
⎟
⎞
⎥
⎤ (5.13)

a3 ⎣2 4 ⎝ k κ ⎠⎦ ⎣2 4 ⎝ k κ ⎠⎦ 

This result then leads to (after another half-page of algebra) 

2
a3


2 
a3 1

= = 2 ≡ P    (5.14)  2
a1

a1 V

1+ o sinh 2 κL 
4E(Vo − E) 

with sinh x = (e x − e− x ) / 2 . A sketch of the variation of P with κL  is shown in Fig. 2. 

Fig. 2.  Variation of transmission coefficient (Penetration Factor) with the ratio of barrier 

width L to λ , the effective wavelength of the incident particle. 
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Using the leading expression of sinh(x) for small and large arguments, one can readily 

obtain simpler expressions for P in the limit of thin and thick barriers, 

P ~ 1− 
4E(V

V

o

o 
2 

− E)
(κL)2 = 1− 

(V 
4 
o L
E 

)2 2 
h 

m 
2 κL  << 1 (5.15) 

P ~ 16E ⎛
⎜⎜1− 

E ⎞
⎟⎟e

−2κL κL  >> 1 (5.16)
Vo ⎝ Vo ⎠ 

Thus the transmission coefficient decreases monotonically with increasing Vo or L, 

relatively slowly for thin barriers and more rapidly for thick barriers. 

Which limit is more appropriate for our interest?  Consider a 5 Mev proton 

incident upon a barrier of height 10 Mev and width 10 F.  This gives κ ~ 5 x 1012 cm-1, or 

κL  ~ 5. Using (5.16) we find 

P ~ 16x 1 x 1 xe−10 ~ 2x10−4 

2 2 

As a further simplification, one sometimes even ignores the prefactor in (5.16) and takes 

P ~ e−γ     (5.17)  

with 

2Lγ = 2κL = 
h 

2m(Vo − E)    (5.18)  

We show in Fig. 3 a schematic of the wave function in each region.  In regions I and III, 

ψ  is complex, so we plot its real or imaginary part.  In region II ψ  is not oscillatory. 

Although the wave function in region II is nonzero, it does not appear in either the 

transmission or the reflection coefficient. 
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Fig. 3.  Particle penetration through a square barrier of height Vo and width L at energy E 

(E < Vo), schematic behavior of wave functions in the three regions. 

When the potential varies continuously in space, one can show that the 

attenuation coefficient γ  is given approximately by the expression 

2 

γ ≅ 
2 x 

∫ dx[2m{V (x) − E}]1/ 2     (5.19)  
h x1 

where the limits of integration are indicated in Fig. 4; they are known as the ‘classical 

turning points’.  This result is for 1D.  For a spherical barrier ( l = 0  or s-wave solution), 

Fig. 4.  Region of integration in (5.19) for a variable potential barrier.  

one has 
2 

γ ≈ 
h 

2 r 

∫ dr[2m{V (r) − E}]1/ 2     (5.20)  
r1 

We will use this expression in the discussion of α -decay. 
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