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22.101 Applied Nuclear Physics (Fall 2006) 
Lecture 3 (9/13/06) 

Bound States in One Dimensional Systems – Particle in a Square Well 

References -­
R. L. Liboff, Introductory Quantum Mechanics (Holden Day, New York, 1980). 

We will solve the Schrödinger wave equation by considering the simplest 

problem in quantum mechanics, a particle in a potential well. The student will see from 

this calculation how the problem is treated by dividing the system into two regions, the 

interior where the particle feels the potential, and the exterior where the particle is a free 

particle (zero potential). The solutions to the wave equation have to be different in these 

two regions to reflect the binding of the particle - the wave function is oscillatory in the 

interior region and exponentially decaying (non-oscillatory) in the exterior region. 

Matching these two solutions at the boundary where the potential goes from a finite value 

(interior) to zero (exterior) gives a condition on the wavenumber (or wavelength), which 

turns out to be the condition of quantization. The meaning of quantization is that 

solutions exist only if the wavenumbers take on certain discrete values, which then 

translate into discrete energy levels for the particle. For a given potential well of certain 

depth and width, only a discrete set of wave functions can exist in the potential well. 

These wave functions are the eigenfunctions of the Hamiltonian (energy) operator, with 

corresponding energy levels as the eigenvalues. Finding the wavefunctions and the 

spectrum of eigenvalues is what we mean by solving the Schrödinger wave equation for 

the particle in a potential well. Changing the shape of the potential means a different set 

of eigenfunctions and the eigenvalues. The procedure to find them, however, is the same. 

For a one-dimensional system the time-independent wave equation is 

� 
! 2 d 2\ (x) 

�V (x)\ (x) E\ (x) (3.1)
2m dx 2 

We will use this equation to investigate the bound-states of a particle in a square well 

potential of depth Vo and width L. The physical meaning of (3.1) is essentially the 
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statement of energy conservation, the total energy E, a negative and constant quantity in 

the present problem of bound-state calculations, is the sum of kinetic and potential 

energies. Since (3.1) holds at every point in space, the fact that the potential energy V(x) 

varies in space means the kinetic energy of the particle also will vary in space. For a 

square well potential, V(x) has the form 

V (x)  �Vo � L / 2  d x t L / 2  

= 0 elsewhere (3.2) 

as shown in Fig. 1. Taking advantage of the piecewise constant behavior of the potential, 

Fig. 1.  The square well potential centered at the origin with depth Vo and width L. 

we divide the configuration space (our entire system) into an interior region, where the 

potential is constant and negative, and an exterior region where the potential is zero. For 

the interior region the wave equation can be put into the standard form of a second-order 

differential equation with constant coefficient, 

d 2\ (x) 
� k 2\ (x) 0 x d L / 2  (3.3)

dx 2 

In (3.3) we purposely introduced the wavenumber k, with k 2 2m(E �Vo ) /  ! 2 always 

positive, so that k is real.  (As an aside note that we will be doing this consistently in 
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writing out the wave equation to be solved. In other words, the wavenumber we 

introduce is always real, whereas the sign of the second term in the wave equation can be 

plus, as seen in (3.3), or minus, as in (3.4).) For k2 to be positive we understand that the 

solutions where –E > Vo will be excluded from our considerations. 

For the exterior region, the wave equation similarly can be put into the form 

d 2\ (x) 
�N 2\ (x) 0 x t L / 2  (3.4)

dx 2 

where N 2  �2mE / ! 2 . To obtain the solutions of physical interest to (3.3) and (3.4), we 

keep in mind that the solutions should have certain symmetry properties, in this case they 

should have definite parity, or inversion symmetry (see below). This means that when 

x o -x, \ (x)  must be either invariant or it must change sign. The reason for this 

requirement is that the Hamiltonian H is symmetric under inversion (the potential is 

symmetric given our choice of the coordinate system (see Fig. 1)). Thus we take for our 

solutions 

\ (x) Asin kx x d L / 2  

x= Be�N   x  >  L/2   (3.5)

 = CeNx   x  < -L/2  

We have used the condition of definite parity in choosing the interior solution as a sine 

function, an odd function.  The choice of a solution with odd parity is arbitrary because 

an even-parity solution, coskx, would be equally acceptable. What about a linear 

combination of the two solutions, such as the sum, Asinkx + Bcoskx?  This particular 

choice would not be acceptable because the sum of an odd and even parity solutions 

violates the requirement that all solutions must have definite parity. 

For the exterior region we have applied condition (i) in Lec2 to discard the 

exponentially growing solution. This is justified on physical grounds; for a bound state 
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the particle should be mostly localized inside the potential well, which is another way of 

saying that away from the well the wave function should be decaying rather than 

growing. 

In the solutions we have chosen there are three constants of integration, A, B, and 

C. These are to be determined by applying boundary conditions at the interface between 

the interior and exterior regions, plus a normalization condition (2.23). Notice there is 

another constant in the problem which has not been specified, the energy eigenvalue E. 

All we have said thus far is that E should be negative. We have already utilized the 

boundary condition at infinity and the inversion symmetry condition of definite parity. 

The conditions which we have not yet applied are the continuity conditions (ii) and (iii) 

in Lec2. At the interface, xo  rL / 2  , the boundary conditions are 

\ int (xo ) \ ext (xo )     (3.6)  

d\ ext (x)d\ int (x) 
(3.7)

dx dxxo xo 

with subscripts int and ext denoting the interior and exterior solutions respectively. 

The four conditions at the interface do not allow us to determine the four 

constants because our system of equations is homogeneous. As in situations of this kind, 

the proportionality constant is fixed by the normalization condition (2.23). We therefore 

obtain C = -B, B Asin(kL / 2)exp(NL / 2)  , and 

cot(kL / 2)  �N / k     (3.8)  

with the constant A determined by (2.23). Eq.(3.8)is the most important result of this 

calculation; it is sometimes called a dispersion relation. It is a relation which determines 

the allowed values of E, a quantity that appears in both k and N . These are then the 

discrete (quantized) energy levels which the particle can have in the particular potential 

well given, a square well of width L and depth Vo. Eq.(3.8) is the consequence of 
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choosing odd-parity solutions for the interior wave. For the even-parity solutions, 

\ int (x) A'cos kx , the corresponding dispersion relation is 

tan(kL / 2)  N / k     (3.9)  

Since both solutions are equally acceptable, one has two distinct sets of energy levels, 

given implicitly by (3.8) and (3.9). To see what are these levels more explicitly, further 

analysis is necessary. 

We consider a graphical analysis of (3.8) and (3.9). We first put the two 

equations into dimensionless form, 

[ cot[  �K (odd-parity) (3.10) 

[ tan[ K  (even-parity) (3.11) 

where [ kL / 2 ,  K NL / 2 . Then we notice that 

[ 2 �K 2 2mL2 V / 4! 2 { /    (3.12)  o 

is a constant for fixed values of Vo and L. In Fig. 4 we plot the left- and right-hand sides 

of (3.10) and (3.11), and obtain from their intersections the allowed energy levels. The 

graphical method thus reveals the following features. There exists a minimum value of 
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Fig. 4.  Graphical solutions of (3.10) and (3.11) showing that there could be no odd-

parity solutions if / is not large enough (the potential is not deep enough or not wide 

enough), while there is at least one even-parity solution no matter what values are the 

well depth and width. 

/ below which no odd-parity solutions are allowed.  On the other hand, there is always at 

least one even-parity solution. The first even-parity energy level occurs at [ � S / 2 ,  

whereas the first odd-parity level occurs at S / 2  � [ � S .  Thus, the even- and odd-

parity levels alternate in magnitudes, with the lowest level being even in parity. We 

should also note that the solutions depend on the potential function parameters only 

through the variable / , or the combination of VoL2, so that the effect of any change in 

well depth can be compensated by a change in the square of the well width. 

At this point it can be noted that we anticipate that for a particle in a potential well 

in three dimensions (next chapter), the cosine solution to the wave function has to be 

discarded because of the condition of regularity (wave function must be finite) at the 

origin. This means that there will be a minimum value of / or VoL2 below which no 

bound states can exist. This is a feature of problems in three dimensions which does not 

apply to problems in one dimension. 

We now summarize our results for the allowed energy levels of a particle in a 

square well potential and the corresponding wave functions. 
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\ int (x) Asin kx or A'cos kx x � L / 2 (3.13) 

\ ext (x) Be�Nx    x > L/2 

= CeNx    x < -L/2 (3.14) 

where the energy levels are 

! 2 k 2 ! 2N 2 

E �V � �     (3.15)  o 2m 2m 

The constants B and C are determined from the continuity conditions at the interface, 

while A and A’ are to be fixed by the normalization condition.  The discrete values of the 

bound-state energies, k or N , are obtained from (3.8) and (3.9).  In Fig. 5 we show a 
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Figure by MIT OCW. 
Fig. 5.  Ground-state and first two excited-state solutions [from Cohen, p. 16].  

Approximate solutions given by the condition of vanishing wavefunction at the potential 

boundary are indicated by the dashed lines. 

sketch of the three lowest-level solutions, the ground state with even parity, the first 

excited state with odd parity, and the second excited state with even parity. Notice that 

the number of excited states that one can have depends on the value of Vo because our  

solution is valid only for negative E.  This means that for a potential of a given depth, the 

particle can be bound only in a finite number of states.  
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To obtain more explicit results it is worthwhile to consider an approximation to 

the boundary condition at the interface. Instead of the continuity of \  and its derivative 

at the interface, one might assume that the penetration of the wave function into the 

external region can be neglected, and therefore require that \  vanishes at x  rL / 2  . 

Applying this condition to (3.13) gives kL nS , where n is any integer, or equivalently, 

n2S 2 ! 2 

E  �V � 2 , n = 1, 2, … (3.16)n o 2mL 

This shows explicitly how the energy eigenvalue En varies with the level index n, which 

is the quantum number for the one-dimensional problem under consideration. The 

corresponding wave functions under this approximation are 

\ n (x) An cos(nSx / L) , n = 1, 3, … 

= A ' sin(nSx / L) n = 2, 4, … (3.17)n 

The first solutions in this approximate calculation are also shown in Fig. 5. We see that 

requiring the wave function to vanish at the interface has the effect of confining the 

particle in a potential well of width L with infinitely steep walls (the infinite well 

potential or limit of Vo of ). It is therefore to be expected that the problem becomes 

independent of Vo and there is no limit on the number of excited states. Clearly, the 

approximate solutions become the more useful the greater is the well depth, and the error 

is always an overestimate of the energy levels as a result of squeezing of the wave 

function (physically, this makes the wave have a shorter period or a larger wavenumber). 
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