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outline 

 the energy storage landscape 

 an electrometallurgical approach 
to large-scale storage 

 portable storage: beyond lithium 



misconceptions about batteries 

๏ not much has changed: not true! 



electrical energy storage 
(Wh/kg)	  (MJ/kg) 

lead acid	 	 35	 	 	0.13 

NiCd	 	 45	 	 	0.16 

NaS	 	 80	 	 	0.28 

NiMH	 	 90	 	 	0.32 

Li ion	 150	 	  	  0.54 

gasoline	 12000		 	 43 



misconceptions about batteries 

๏ not much has changed: not true! 

๏ no Moore’s Law (transistor count 2x every 2 years): 
 the battery is an electrochemical device 
 2 interfacial reactions, each drawing upon reagents

               transported from contiguous volumes 
 mass and charge transport required 

๏ all microelectronics are silicon-based: 
 device performance improvements come from 

better manufacturing capabilities 

๏ all new batteries are based on entirely new chemistries 
 radical innovation 



different approaches for 
different applications

๏ don’t pay for attributes you don’t need

๏ cell phone needs to be idiot-proof

๏ car needs to be crashworthy

๏ safety is a premium in both applications

๏ how about service temperature?                    
human contact?

๏ stationary batteries: more freedom in choice of 
chemistry but very low price point  



market price points 

application price point 

communications $1,000 / kWh 

automobile traction $100 - 200 / kWh 

laptop computer $2,000 - $3,000 / kWh 

severity of service conditions price 

stationary storage $50 / kWh 



storage is the key enabler 
๏ for deployment of renewables: unless their intermittency 

can be addressed they cannot contribute to baseload 
 even if you had 100% conversion efficiency in 
     photovoltaics they still wouldn’t make it in much of the

 marketplace 

๏ in grid-level storage we need to think about the problem 
differently when combustion is an option: 

 stringing together thousands of Li-ion batteries won’t do:
     here the whole is less than the sum of its parts 

 batteries invented for portable applications are not
 scalable at an acceptable price point 



storage is the key enabler 

๏ smart grid requires rapid response capability 
 colossal electric cache 
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storage is the key enabler 

๏ smart grid requires rapid response capability 
 colossal electric cache 

๏ transmission line congestion 
 colossal electric cache 

๏ load leveling 
 colossal electric cache 

๏ load following 
 colossal electric cache 



accelerating the rate of discovery 

๏ there is plenty of room at the top: 
we are not up against any natural laws of nature yet      
 time to start thinking beyond lithium 

๏ the field is woefully underfunded by government: 

energy research in total $1.4B (2006) < ⅙ 1979 figure 
c.f. medical research rose by 4× to $29B 

๏ the private sector research spending is even bleaker: 
US energy industry < 0.25% revenues 
c.f. pharmaceuticals 18%

 semiconductors 16%
 automotive 3% 



accelerating the rate of discovery 

๏ more money   more people                              
 sustained effort   the brightest minds 

๏ new approaches: computational materials science 
 Volta partners with Schrödinger, i.e., bring

 quantum mechanics to battery engineering 
 high-throughput computing screens candidate
           materials before lab testing begins 

๏ confine chemistry to earth-abundant elements 
readily available, i.e., not to those potentially 
subject to cartel pricing 



how to think about inventing in 
this space 

๏ look at the economy of scale of modern 
electrometallurgy: aluminium smelter 

๏ bauxite, cryolite, petroleum coke, capital cost of 
$5000/annual tonne, 14 kWh/kg 
 virgin metal for less than $1.00/kg 

๏ how is this possible? 
 we don’t make aluminium in little beakers 

๏ to make metal by the tonne we have giant cells, 
literally large halls in which liquid metal pools on a 
single cathode spread over the entire floor 



a modern aluminium smelter

Charles Martin Hall, USA
Paul L.T. Héroult, France 

1886  

15

15 m × 3 m × 1 km × 0.8 A⋅cm−2

a modern aluminium smelter

Charles Martin Hall, USA
Paul L.T. Héroult, France 

1886  
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how to think about inventing in this space: 
pose the right question 

…into this
convert this… 

aluminium potline 

350,000 A, 4 V 

start with a giant current sink 

Image by MIT OpenCourseWare. Adapted from Donald Sadoway.

Heavy DutyBattery



The result of  work started 3 years ago under sponsorship 
by the MIT Deshpande Center and the Chesonis Family 
Foundation: 


 reversible ambipolar electrolysis, a.k.a.,


liquid metal battery 

Molten Magnesium

Molten Antimony

Electrolyte
Refractory 

lining

Image by MIT OpenCourseWare.



re
Molten Magnesium

Molten Antimony

Electrolyte
Refractory 

lining

Image by MIT OpenCourseWare.

fracto

on discharge


Mg(liquid)  Mg2+ + 2 e-


Sb(liquid) + 3 e-  Sb3-


liquid 
metal 

battery 
21 



cell section after cycling 48 h at 700°C


electropositive 

anode


molten salt 

electrolyte


electronegative 

cathode
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attributes of all-liquid battery 

 
all-liquid construction eliminates 
reliance on solid-state diffusion 


  long service life 

23 


 liquid-liquid interfaces are kinetically 
the fastest in all of electrochemistry 


  low activation overvoltage 



attributes of all-liquid battery 


all-liquid construction eliminates any 
reliance on solid-state diffusion 


  long service life 


all-liquid configuration is self-assembling 
 expected to be scalable at low cost 

24 


 liquid-liquid interfaces are kinetically 
the fastest in all of electrochemistry 


  low activation overvoltage 
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Image by MIT OpenCourseWare.



cost / performance
better than lithium-ion, cheaper than lead acid
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 Liquid Metal Battery 

??? 



opportunities for basic science 


database is spotty: alloys lacking 
widespread commercial use 


 theory not ready to predict properties of 
liquid metals and alloys 
 properties must be measured 

28 


 emf data in molten salts require verification 
with candidate metal couples 
 “доверяй, но проверяй” 

...trust, but verify... 



activity measurements of Ca - Bi alloys




scaling laws: towards self-heating cell
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next steps 


cycle performance data 


analysis of failure modes 


self heating cell 


cell optimization 

 cost model 
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tethered in the wireless age  portable power 

enabling radical innovation: 

biomedical devices transportation


Images of an implantable defibrillator and an electric car have been removed due to copyright restrictions. 
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motivation 

Imagine driving this:
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motivation (continued) 

without the need for this:
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Image by Mirjana Chamberlain-Vucic on Flickr.

http://www.flickr.com/photos/mirjana/15802430/
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relevant enabling technology 

Heavy DutyBattery

Image by MIT OpenCourseWare. Adapted from Donald Sadoway.



The message 

There’s plenty of  room at the top: 
we are far from hitting the 

ceiling set by nature. 

The road to success is paved 
with advanced materials. 
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A bit of  automotive history 

1888 Frederick Kimball, Boston: 
first electric passenger car 

why now the renewed interest? 
answer: CARB 

to improve urban air quality 
CARB set new standards, including... 

CARB Implementation Dates for ZEVs 
1998 2% new car sales


2001 5% new car sales


2003 10% new car sales


1991 NESCAUM formed 
1992 MA adopts CA standards 
 in the minds of many policy makers, ZEV implies EV 
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Problems with EV propulsion 

1.	 range: function of energy density of the battery. 
Compare gasoline @ 13,000 (theo.) / 2600 Wh/kg 
with the lead-acid battery @ 175 (theo.) / 35 Wh/kg 

2.	 time to refuel: charge 40 kWh in 5 minutes? 
  220 V × 2200 A!!!  
When you pump gasoline @ 20 /min, 
your energy transfer rate is about 10 MW! 
(Hint: energy density of gasoline is 10 kWhth/.) 
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Problems with EV propulsion 

3. cost: 
(1) light but safe means higher materials costs, 


e.g., less steel, more aluminum; 

and higher processing costs, 

e.g., fewer castings, more forgings... 
(2) to reduce load on the battery requires 


high efficiency appliances  costly


(3) low cycle life — batteries priced @ $4,000 to $8,000 
lasting about 2 years 

10.391J Sustainable Energy November 23, 2010Sadoway 



Battery basics 

what is a battery? 
a device for exploiting chemical energy 

to perform electrical work 
i.e., an electrochemical power source 

the design paradigm? 
choose a chemical reaction with 
a large driving force (ΔG) and fast kinetics

to cause the reaction to occur by steps 
involving electron transfer 
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A simple chemical reaction 

PbO2  + Pb + H2SO4(aq)
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  2 H2O + PbSO4 
intimate mixing of all reactants 



Pb + SO4
2−(aq)  PbSO4

Same reaction, but not so simple 

+ 2 e− 

PbO2  + 4 H+
(aq)  + SO4

2−(aq)  + 2 e− 

  2 H2O + PbSO4 

reactants physically separated 
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Electrons in motion 

Pb + SO4
2−(aq)  PbSO4  + 2 e− 

PbO2  + 4 H+
(aq)  + SO4

2−(aq)  + 2 e− 

  2 H2O + PbSO4 
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Electrons in motion 

PbSO4  + 2 e−   Pb + SO4
2−(aq) 

2 H2O + PbSO4  

PbO2  + 4 H+
(aq)  + SO4

2−(aq)  + 2 e− 
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The lead-acid battery 

anode:

Pb + SO4

2−(aq)  PbSO4  + 2 e− 

Pb0   Pb2+  + 2e− (oxidn) 

cathode: 
PbO2  + 4 H+

(aq)  + SO4
2−(aq)  + 2 e− 

10.391J Sustainable Energy November 23, 2010Sadoway 

 
  2 H2O + PbSO4 

Pb4+  + 2 e−   Pb2+ (redn) 
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Lead-acid battery on discharge 

Image by MIT OpenCourseWare. Adapted from Donald Sadoway.



The nickel metal-hydride battery 

cathode:
 NiOOH(aq)  + 2 H2O + e− 

  Ni(OH)2(aq)  + OH−(aq) 

anode: 
MH + OH−(aq)   M  +  H2O + e− 

electrolyte: 30% KOH(aq)  (alkaline) 
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The nickel metal-hydride battery 

cathode:
 NiOOH(aq)  + 2 H2O + e− 

  Ni(OH)2(aq)  + OH−(aq)

 Ni3+  + e−   Ni2+ 

anode: 
MH + OH−(aq)   M  +  H2O + e− 

H   H+  + e− 
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The lithium ion battery 

anode (-) 

Liin carbon   Li+  + e-

cathode (+) 

Li+  + e- + LixCoO2   Li1+xCoO2 

Li+  + e- + Co4+   Li+  + Co3+ 

electrolyte: 1 M LiPF6 in 
1:1 ethylene carbonate – propylene carbonate 
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Battery Performance Metrics 

[1] J.-M. Tarascon and M. Armand, Nature 414, 359 - 367 (2001) 

Ragone plot 
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Reprinted by permission from Macmillan Publishers Ltd: Nature. 

Source: Tarascon, J. M., and M. Armand. "Issues and Challenges Facing Rechargeable Lithium Batteries." Nature 414 (2001). © 2001.



Warhol,  “Marilyn Diptych” (1962) Tate Gallery 
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Please see Andy Warhol, "Marilyn Diptych," 1962.

http://www.tate.org.uk/servlet/ViewWork?workid=15976&tabview=work


Sadoway,  “GM EV1 Diptych” (2005) Private Collection 

1 Wh/kg storage capacity 

 1 mile driving range 
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USABC Long-term Performance Goals 

operating temp. -40 to 85ºC 

specific energy 200 Wh/kg @ C/3 
energy density 300 Wh/L @ C/3 

specific power 400 W/kg 
power density 600 W/L 

cycle life 1000 cycles @ 80% DOD 
service life 10 years 

ultimate price ~ $100/kWh for 40 kWh packs 
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new thresholds in performance 

Today LiCoO2, LiNiO2, LiFe(PO4) all use only one electron per 
metal (e.g. Co4+/Co3+) 

⇒ theoretical capacity limited << 300 mAh/g 

The Future	 compounds where metal cycles 
over multiple redox steps 

10.391J Sustainable Energy November 23, 2010Sadoway 
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Image by MIT OpenCourseWare.



breaking the one-electron barrier 

In the presence of Mn, 

Li+  + 2e- + LiXNiO2   Li1+XNiO2


Li+  + 2e- + Ni4+   Li+  + Ni2+


10.391J Sustainable Energy November 23, 2010Sadoway 

 theoretical capacity 

≈  600 mAh/g ! 

≈  540 Wh/kg ! 

two-electron change around Ni 
upon Li intercalation 

G. Ceder, MIT 

c.f. 150 Wh/kg in Li ion 

Courtesy of Gerbrand Ceder. Used with permission.



breaking the one-electron barrier 

Your wildest dream 
Li+  + 3e- + LiXCrO3   Li1+XCrO3 

Li+  + 3e- + Cr6+   Li+  + Cr3+ 

 theoretical capacity 
≈  1000 mAh/g ! 

≈  700 Wh/kg ! 700 mi 
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breaking the one-electron barrier 

Your wildest dream 
Li+  + 3e- + LiXMnO4   Li1+XMnO4 

Li+  + 3e- + Mn7+   Li+  + Mn4+ 

 theoretical capacity 
≈  1000 mAh/g ! 

≈  700 Wh/kg ! 700 mi 
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supervalent battery: beyond lithium 

 energy density ∝ (ion charge)2 

 can Li become a strategic resource? 
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limitations of  lithium 

Please see: Abuelsamid, Sam. "Forget Peak Oil. Are We Facing Peak Lithium?" AutoblogGreen,
January 30, 2007. LaMonica, Martin. "Electric-Car Race Could Strain Lithium Battery Supply."

CNET Green Tech, October 31, 2008. Kempf, Herve. "Limited Lithium Supplies Could Restrict
Electric Car Growth." EV World, October 9, 2008. Kahya, Damian. "Bolivia Holds Key to Electric

Car Future." BBC News, November 9, 2008. "The Trouble with Lithium 2: Under the Microscope."

Meridian International Research, May 29, 2008.
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http://green.autoblog.com/2007/01/30/beyond-peak-oil-are-we-facing-peak-lithium/
http://news.cnet.com/8301-11128_3-10077965-54.html
http://evworld.com/article.cfm?storyid=1544
http://evworld.com/article.cfm?storyid=1544
http://news.bbc.co.uk/2/hi/7707847.stm
http://news.bbc.co.uk/2/hi/7707847.stm
http://www.meridian-int-res.com/Projects/Lithium_Microscope.pdf


supervalent battery: beyond lithium 

 energy density ∝ (ion charge)2 

 can Li become a strategic resource? 

 with MITEI support we have begun 

searching for redox couples based upon 

ions of  valence ≥ 3, e.g., Al3+ 
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supervalent battery: beyond lithium 

 energy density ∝ (ion charge)2 

 can Li become a strategic resource? 

 with MITEI support we have begun 

searching for redox couples based upon 

ions of  valence ≥ 3, e.g., Al3+ 

 not just intercalation reactions but also 

metatheticals 
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The hydrogen fuel cell 

anode:
 H2   2 H+  + 2 e− 

cathode: 

½  O2  + 2 H+  + 2 e−   H2O 

electrolyte: 
proton (H+) conductor, 

i.e., proton exchange membrane (PEM) 

 both electrode reactions occur on substrates

 made of platinum-group metals 
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The hydrogen fuel cell 

anode:
 H2   2 H+  + 2 e− 

cathode: 
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electrolyte: 
proton (H+) conductor, 

i.e., proton exchange membrane (PEM) 
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The hydrogen fuel cell 

technical issues: 
 hydrogen on board? pure H2? LaNi5? 
 generation of hydrogen? 

water electrolysis? 
cracking of natural gas or even gasoline? 

 electrode stability: 
corrosion, contamination, mechanical disturbance,

           conversion efficiency 
 electrolyte stability: breakdown, impurities 
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potential showstoppers 

Cost: noble-metal electrodes 

Cost: no infrastructure 
for H2 delivery 

Effectiveness: will this truly 
reduce CO2 emissions? 
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…in summary 

 One size does not fit all: 

	 different applications call for different power sources.


 Batteries have been around for a long time: 

user community justifiably frustrated at present state 
of battery development. 

 Big changes are under way: 

ingress of materials scientists invigorating the field; 
computational materials science accelerating the rate 
of discovery if we make the investment. 
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…in summary 

	 Development of human resources: 

	 electrochemical science & engineering need 
sustained support to attract and retain the 
best and brightest 
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Volta 
Museum

Como, Italy

The End
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