
22.06 ENGINEERING OF NUCLEAR SYSTEMS 

OPEN BOOK 	 FINAL EXAM (solutions) 

Short Questions (10% each) 

a)	 The volumetric heat generation rate can be expressed as the product of the fission 
energy (=200 MeV/fission) times the fission reaction rate (fissions/cm3-second): 

q"'  f N235	        (1)  

where q"'=200 W/cm3, f = 577 b and the number density of 235U, can be found as 
follows: 

N235  
x235U Nav  9.51020 nuclei/cm3     (2)  

A235 

where x235=0.04 is the weight enrichment, U=9.3 g/cm3 is the uranium density in the 
fuel, Nav=6.0221023 is Avogadro’s number and A235=235 g/cm3 is the atomic weight 
of 235U. Thus, from Eq (1), we get   1.11013 n/cm2-s. 

b) 
i) The conservation of energy equation is: 

m
dh 

 q"(z)D	        (3)  
dz 

where m =0.5 kg/s. This equation can be integrated between z=0 and z=zsat, to give: 
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where hin is the enthalpy at the inlet.  The enthalpy difference on the LHS of Eq. (4) is 
hf -hin =cp,f (Tsat-Tin), with Tin=260C. Thus, solving for zsat in Eq. (4), we get: 

zsat	  
L 

cos1 
1 

m cp , f (Tsat  Tin ) 
  0.98 m

 DLq   max  

ii) Integrating Eq. (3) from z=0 to z=L, we get: 



L 

m (h  h )  D q"(z)dz  2DLq 	 (5)out in max


0


where hout is the enthalpy at the outlet, which can be expressed in terms of the outlet 
quality, xout, as hout  xout hg  (1 xout )hf . The enthalpy difference on the LHS of Eq. 

(5) can then be re-written as: 

hout  hin  (hout  hf )  (hf  hin )  xout h fg  cp, f (Tsat  Tin )	 (6) 

Substituting Eq. (6) into Eq. (5) and solving for xout, we get: 

max2DLq 
 cp, f (Tsat  Tin )


xout  m 0.024

hfg


c) 

i)	 Higher flow rate, nominal power and inlet temperature. The coolant temperature 
is lower, thus the DNB heat flux is higher. The operating heat flux does not 
change. Therefore, the MDNBR is higher. 

zL0 

Heat flux 

q″ DNB at new 
conditions 

q″ at nominal and new 
conditions 

q″ DNB at nominal 
conditions 

zL0 

Temperature 

Coolant temperature at 
nominal conditions 

Coolant temperature at 
new conditions 

ii)	 Higher inlet temperature, nominal power and flow rate. The coolant 
temperature is higher, thus the DNB heat flux is lower. The operating heat 
flux does not change. Therefore, the MDNBR is lower. 
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Problem 1 (50%) - Calculating the Mass Flow Rate for a Prescribed Pressure Drop 

i)

The mass flow rate, m , is: 


m  GA 

A  
π 

D2 =0.785 cm2 is the flow area, and D=1 cm.  The mass flux, G, can be found from
4 

the imposed friction pressure drop: 

L G2 

Pfric  f          (7)  
D 2 

where L=10 m,  is the coolant density and f is the friction factor. The problem statement 
suggests to (i) assume Re>30000, (ii) neglect roughness and (iii) assume fully-developed 
flow. Under these assumptions, the friction factor can be calculated from the following 
correlation: 

0.184 0.184
f 

Re0.2 
 

(GD / )0.2 
      (8)  

Substituting Eq. (8) into Eq. (7) and solving for G, one gets: 

 2Pfric D1.2 
1/1.8 

G           (9)  
 0.184L 0.2 

 



Eq. (9) gives G5040 kg/m2-s and G6490 kg/m2-s, for sodium and liquid salt, 

respectively. Thus, the mass flow rates are 0.404 kg/s and 0.509 kg/s, respectively.  Note

that in both cases, the value of the Reynolds number is above 30000, thus that assumption 

is verified. 


ii)

Since the heat flux is uniform, the maximum surface temperature will occur at the

channel outlet and will be equal to (from Newton’s law of cooling): 


Tsurf  Tout  
q" 

       (10)  
h 

where Tout is the bulk coolant temperature at the channel outlet, q"=200 kW/m2 and h is 
the heat transfer coefficient.  From the conservation of energy equation (integrated 
between z=0 and z=L), we have: 

Tout  Tin  
q"DL 

       (11)  
m cp 

where Tin=600C and cp is the coolant specific heat.  The outlet temperature is calculated 
from Eq. (11) to be 720 and 651C for sodium and the liquid salt, respectively.  As for 
the heat transfer coefficient, in the case of sodium (Pr=0.037<<1, turbulent, fully-
developed flow, constant heat flux in round channel) the correct correlation is 
Nu=7+0.025 Pe0.8 (with PeRePr1114), from which we get h= 83.1 kW/m2-K, 
whereas in the case of liquid salt (Pr=4.82>1, turbulent, fully-developed flow, constant 
heat flux in round channel) the Dittus-Boelter correlation is suitable, from which we get 
h 17.5 kW/m2-K.  Substituting these values into Eq. (10), we get Tsurf 722 and 663C 
for sodium and liquid salt, respectively. Note that, in spite of a much higher heat transfer 
coefficient, the surface temperature in the sodium case is higher than in the liquid salt 
case. This is due to the lower specific heat of sodium which results in a higher Tout. 

Problem 2 (20%) - Sizing the Silicon Carbide Layer in a TRISO Fuel Particle 

The stresses for a thin spherical shell of radius Rs can be calculated as follows: 

r = -(pi+po)/2        (12)  
θ =  = (pi-po)Rs/(2 t) 

Where Rs=280 m, po=8 MPa, t is the (unknown) thickness of the shell, and pi is the 
internal pressure due to the fission gases.  The fission gas pressure can be calculated from 
the perfect gas equation as follows: 

pi=NRT/VFG=36.8 MPa (13) 



3Where N=10-7 mol, R=8.31 J/mol-K, T=1223 K (950C) and VFG  0.3 
4 Rs =2.810-11 

3 
m3. The Von Mises failure criterion is expressed by the following inequality: 

1 2 2 2 

2 
( r  )  ( r  )  (  )   S y    (14)  

where Sy=200 MPa for SiC at 950C.  Noting that θ =  , Eq. (14) becomes: 

(  r )  Sy         (15)  

Substituting Eqs. (12) into Eq. (15), one gets: 

(pi-po)Rs/(2 t)+(pi+po)/2<Sy       (16)  

Solving Eq. (16) for t, one gets the minimum required value of the shell thickness to 
prevent failure: 

tmin  Rs 

pi  po =22.7 m 

2S y  ( pi  po )


Note that the use of the thin-shell theory is justified because Rs/tmin>10. 
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