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Hydrogen - Major Considerations
�

What temperature(s)? 
– Determines what heat source to use 

Overall cost per GGE (gallon of gas equiv.) 
Are there any emissions? 
What new technologies can improve things? 
*How much do you want to make? 

– Do you care about the cost? 
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Hydrogen – The Kværner Process
�

Zap hydrocarbons with a plasma arc to 
dissociate them: 

y 
x y (Plasma Arc ) → xC s + H 2 ( ) C H + ( ) g

2 

*Burns fuel! 
*1600°C! 

– Other processes also gassify fuels...
�
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Hydrogen – Electrolysis (Low-T)
�

License CC BY-NC-SA.

Works as low as room 
temperature 

Fairly inefficient 
– Heat → Elec. → H2 

Expensive 
– Electrodes (Pt) 

High cell voltage (>1.23V) 
Image source: What can we do??? 

http://www.instructables.com/id/Separate-
Hydrogen-and-Oxygen-from-Water-Through-El/ 

License CC BY-NC-SA 
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Hydrogen – Electrolysis (High T)
�

Plot generated using HSC 6.0
�

Raise the temperature 
–	�Lowers Ecell, ΔG to 

dissociate water 

Three cycles use high temp.  
elec. (HTE) at ~850°C
�

– ISPRA Mark 13 
– Hybrid sulfur (HyS)
�

•	�Also known as WSP, 
GA-22 and ISPRA 
Mark 11 

– Sulfur iodine 
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Hydrogen – HTE Theory
�

↓ [H2SO4]↑ → Vcell↓T↑ → EA,dissociate

Step 1: 2H SO → 2H O + 2SO → 2SO + 2H O + O 2 4 2 3 2 2 2 

Step 2 (S-I, ISPRA-13): 
( , ) + SO + 2H O → 2 ( , )I Br H I Br + H SO 2 2 2 2 4 

H I Br ( ) + , 

Step 2 (WSP): SO + 2H O → H SO + H 

Step 3 (S-I, ISPRA-13): 2 , → H 2 (I Br )2 

2 2 2 4 2 

All require input heat at ~850°C 
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Source:  C. Forsberg et al.  “A Lower-Temperature 
Iodine-Westinghouse-Ispra Sulfur  Process  for  

Thermochemical Production of  Hydrogen.”2003  

Courtesy of Oak Ridge National Laboratory.

Hydrogen – Sulfur Iodine Process
�

ANS Winter Meeting, New Orleans, LA (2003).
�
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Hydrogen – HyS (WSP...), ISPRA 
More on  

this soon...  

Source: C. Forsberg et al.  “A  

Nominally Lower-Temperature Iodine- 
Westinghouse-Ispra Sulfur  

same inputs Process for Thermochemical  
Production of Hydrogen.”2003 

as S-I process ANS Winter Meeting, New 
Orleans, LA (2003). 

Courtesy of Oak Ridge National Laboratory.
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Hydrogen – Lowering HTSE Temp.
�

Remove products to
�
shift equilibrium
�

– Nanoporous ceramics 
– Nanoporous membranes 
–	�Knudsen diffusion or 

molecular sieving 
2H SO → 2H O + 2SO → 2SO + 2H O + O2 4 2 3 2 2 2Courtesy of Trans Tech Publications. Used with permission.

Source: Wach, R.A., Sugimoto, M. et al., Development  
of  Silicon Carbide Coating on Al2O3 Ceramics  from  

Precursor Polymers by Radiation Curing, Key  
Engineering Materials, vol.317, 2006, p.573-576 

Molecule Molar Mass (g/mol) 

H2O 18 

O2 32 

SO2 64 
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Hydrogen – New Methods 
Microbial production  LTUE 

– Some bacteria  – The 'U' stands for 'urine'  
produce H2 when – Urea contains four 
deprived of sulfur weakly-bound 

– E. Coli, C. butyricum, hydrogen atoms 
Clostridia, many – Vcell = 0.37V 
others can produce – Uses Ni, not Pt  H2 from organics 

for a catalyst  
Public domain image
(source: Wikipedia).

Image: http://en.wikipedia.org/wiki/File:Urea-3D-balls.png
Source: R. Nandi and S. Sengupta. Critical Reviews in Science: B K Boggs, R L King and G G Botte, Chem.  

Microbiology.  Vol. 24, No. 1 , pp. 61-84 (1998). Commun., pp. 4859-4861 (2009)  
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Biofuels – Basic Theory
�

Produce hydrocarbons from C- and H-bearing 
chemicals 

– “Burn in reverse” 
Consumes large amounts of energy 
Major advantages: 

– Carbon sequestration 
– Use of wastes from crop production 
– Fossil fuel displacement 
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Biofuels – Ethanol from Cellulose
�

Made from enzymatic 
decomposition of 
lignocellulose 

– Produces toxins 
– “Burning food” concern 
– Lignin (woody) fraction 

is hard to use, 
normally burned 

Source: L. O. Ingram et al. Biotechnol. 
Image source: http://derek.broox.com/photos/brooxmobile/11246/ Prog. Vol. 15, pp. 855-866 (1999). 

Courtesy of Derek Brooks. Used with permission.
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Biofuels – Enter Nuclear Heat
�

High T process heat 
opens doors 

– Required for 
efficient fuel 
production in: 
• Syngas production 
• Fischer-Tropsch  

(F-T) diesel
�
Image Source: 

http://www.nrel.gov/vehiclesandfuels/npbf/gas_liquid.html substitutes 

©NREL. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see http://ocw.mit.edu/fairuse.
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Biofuels - Syngas
�

Partially combust feedstock with O2, create CO + H2 

– Feedstocks: coal, plants 
– Traditional coal-to-liquids (CTL) technologies get 

about 1/3 of the carbon into fuel 
• With enough H2 (from nuclear plant) and heat, 

almost all carbon can be captured and used 
– Syngas can be burned as fuel, or fed as feedstock to 

F-T synthesis 
Source: E. A. Harvego, M. G. McKellar, and J. E. O’Brien. “System Analysis of Nuclear-Assisted Syngas Production from Coal.” 

J. Eng. Gas Turbines Power, Vol. 131:4 (2009). 
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Biofuels – F-T Fuel Synthesis
�

Create liquid fuels (diesels) from CO + H2
�

(2 n + 1) H + nCO → C H + nH 2 n (2 n + 2) O 2 

Temperatures of 150-300°C
�
Efficient F-T synthesis requires H2:CO = 2
�

– Feedstock, like coal, is often H2 deficient 

– Nuclear-generated H2 is a good supplement 
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Biofuels – Example Syngas/F-T 

***Source, M. Laser et al. Biofuels, Bioprod. Bioref. 3:231–246 (2009). 
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Biofuels – Other Methods
�

Electrofuels 
–	�Uses syngas as
�

feedstock
�
–	�Microbes act as 

catalysis in fuel cells 
–	�Possibilities for creating 

jet fuel 
–	�Most are in early stages 

of R&D 

http://arpa-e.energy.gov/ProgramsProjects/Electrofuels.aspx 

Algae Growth 
–	�Grows 20-30 times 

faster than food crops 
– Very low T heat 
–	�Lipid & carbohydrate 

content of algae 
determines fuel 
production 

– Can be contaminated
�
– Commercial viability...
�

H. C. Greenwell et al. J. R. Soc. Interface 7:46 pp. 703-726 (2010). 
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Biofuels – Major Questions
�

What feedstock will you use?
�
What products will you produce?
�
What temperatures do you have to work with?
�
What process(es) will you use?
�
If/How to use hydrogen in biofuel production?
�
How much do you want to produce?
�
What are the economics of your choices?
�
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The Design Process:
�
Decisions, Decisions...
�

Lecture 3c
�
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�
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�
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The Engineering Design Process
�

Weeks 1-2 

Weeks 3-4 

Weeks 5-8 

ITERATE! 

(Public domain image.) http://www.nasa.gov/audience/foreducators/ 
plantgrowth/reference/Eng_Design_5-12.html 
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Steps 1 & 2 – Problem 
Identification & Constraints 

Identify key parts of the problem (constraints) 
Understand the problem statement: Design a 

non-PWR/BWR that produces hydrogen 
and biofuels, subject to: 

– Must be able to produce at least 100MWe
�
– Produce at least one alternative fuel source
�
– H2 & biofuels processes must be somewhat 

demonstrated 
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Steps 3 & 4 – Brainstorm
�
Solutions, Generate Ideas
�

Think of different ways to solve the problem
�
– Different core options 
– Different H2 & biofuel production methods 
– What to offer as possible products 
– How much of each product to make in 

different scenarios 
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Step 5 – Explore Possibilities
�

RESEARCH!!! 
– See what's out there, and where to find it. 
– SHARE this information with everyone 
– Collect your findings, compare to your initial ideas 

for solutions 

ITERATE: Return to step 3 until you reach 
“information saturation” 

– You will learn when diminishing returns kick in
�
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Step 6 (1/2) – Down-selection, 
Choose an Overall Strategy 

All possible design choices Apply 
design criteria 

Teams: choose importance 
metrics, evaluate priorities, 
narrow down choices and iterate 

Possible 
choices 

Group discussions: which choices Few final contenders 
are likely to lead to the best for HoQ or other 
design? Are your team's choices 
cross-compatible with each other? formal metric 

Chosen design path 
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Online Tutorial: http://www.webducate.net/qfd/qfd-hoq-tutorial.swf
�
Templates: http://www.qfdonline.com/templates/qfd-and-house-of-

quality-templates/
�

Step 6 (2/2) – Down-selection, 
Importance Metrics 

One method: The House 
of Quality (HoQ) 

–	�Matches engineering 
requirements with 
customer desires 

– The “customer” is the 
U.S. energy demand
�
(you will estimate it)
�

–	�You assign probabilities 
to different design 
aspects 
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Step 7 – Start Designing!
�

Start building block diagrams, inserting 
and/or estimating initial parameters, inputs 
& outputs for energy & mass flow 

See if anything doesn't work, violates the laws 
of physics, etc. 
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Step 8 – Refine, Iterate
�

Stumbling blocks may require a “return to the 
drawing board” 

– With good note-keeping and models, iteration 
should take little time compared to initial 
design 
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