Ignition of a Confined Plasma Fusion Gain Factor and the Lawson Criterion

Katie Stanchak
22.012 Spring 2006
Prof. Molvig

Ignition - unconfined reaction

Courtesy of the U.S. Department of Energy.

Courtesy of U.S. Atomic Energy Commission.

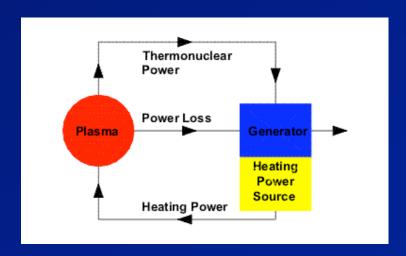
"Ivy Mike"
The World's first
Thermonuclear Explosion

Image removed for Copyright reasons

Courtesy of Wikipedia.

Teller-Ulam Design "the secret of the hydrogen bomb"

Fusion Gain Factor


Ratio of power produced by fusion reaction with power needed to heat the plasma

$$Q = P_{fusion} / P_{heat}$$

$$Q = 10 \longrightarrow ITER$$

Lawson Criterion

Determines values of the double and triple products needed for the ignition and steady-state reaction of a confined plasma

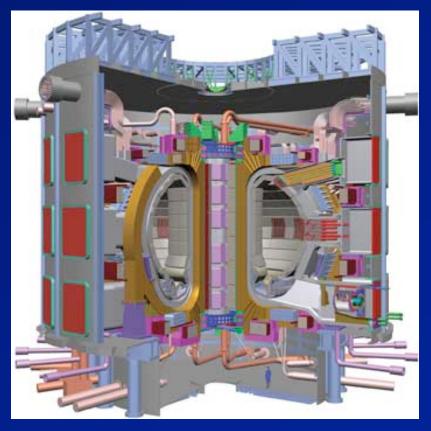
Courtesy of the Associated Plasma Laboratory of Brazil. Used with permission.

 $Found\ at\ http://www.plasma.inpe.br/LAP_Portal/LAP_Site/Text/Conditions_for_Fusion.htm$

Image removed for Copyright reasons

Plasma temperature needed to meet Lawson Criterion

History of tokamaks approaching Lawson Criterion


Courtesy of the Associated Plasma Laboratory of Brazil. Used with permission. Found at http://www.plasma.inpe.br/LAP_Portal/LAP_Site/Figures/Progress_in_Fusion.gif

Some Difficulties:

- Ability to contain such high temperatures
- Higher T requires more initial power, making it more difficult to reach breakeven
- Wall collisions create wave disruptions in the plasma resulting in turbulent transport and more energy loss

ITER

Expected to achieve ignition and steady-state reaction in a toroidal confinement

Courtesy of ITER.

Inertial Confinement Ignition

National Ignition Facility

Image removed for Copyright reasons

http://www.llnl.gov/nif/

Courtesy of Per F. Peterson, 1998.

Courtesy of Lawrence Livermore National Laboratory.

The Physics of Plasmas. Boyd, T.J.M., J.J. Sanderson. Cambridge University Press, Cambridge, UK, 2003.

Nuclear Power - fusion. Fowler, T. Kenneth. Reviews of Modern Physics, Vol. 71 No. 2, 1999.

Course Notes: 22.611 Dr. Ian Hutchinson, Massachusetts Institute of Technology, Spring 2003.

http://other.nrl.navy.mil/EnergyOptions/PFP_Dean/PFP_Dean.pdf

http://www.jet.efda.org/pages/faqs

Wikipedia. http://en.wikipedia.org. Lawson Criterion, Fusion Energy Gain Factor.

http://oldwww.cfn.ist.utl.pt/port/expofusao/lawson.gif

http://www.nationmaster.com/wikimir/images/unload.wikimedia.org/wikinedia/en/thumb/8/8c/Teller_Ulam_device.png/360py_Teller_Ulam_device.png

http://upload.wikimedia.org/wikinedia/commons/thumb/6/68/DT_ntauF_svg/950nv_DT_ntauF_svg pna

http://www.plasma.inne.br/I AP Portal/I AP Site/Figures/Power Flow.gif

http://www.plasma.inpe.br/LAP_Portal/LAP_Site/Figures/Progress_in_Fusion.gif

http://www.fusie-energie.nl/watisker/images/ITER2.jpg

http://www.nuc.berkelev.edu/thyd/icf/fig/NIFbldg.jpg

http://www.nuc.berkelev.edu/thyd/icf/fig/Cap1.gi

http://www.nuc.berkelev.edu/thvd/icf/fig/Cap3.gi

http://www.nuc.berkelev.edu/thyd/icf/fig/Cap5.gif