
Chapter 4. Meeting 4, Foundations: Managing Events, Signals,
and Data

4.1. Announcements

•	 Bring controllers and amps to next class on Wednesday

4.2. Review Pd Tutorial 2

•	 ?

4.3. Reading: Ryan: Some Remarks on Musical Instrument Design at
STEIM

•	 Ryan, J. 1991. “Some Remarks on Musical Instrument Design at STEIM.” Contemporary Music
Review 6(1): pp. 3-17.

•	 Why is a desire for immediacy in computer music seen as possibly historically surprising or ironic?

•	 Why does Ryan reject the word `interface` as sufficient to describe musical controllers?

•	 Why does Ryan suggest that it might be interesting to make musical control as difficult as
possible?

•	 What generalizations can be made about the approach and type of work done at STEIM?

•	 Whats wrong with general-purpose solutions?

4.4. Overview

•	 Hardware inputs

•	 Triggers

•	 Lists

4.5. Hardware Inputs

•	 Hardware inputs are usually serial data from USB or a network communication

•	 There may be platform-specific differences may emerge

56

4.6. The Dual Analog Interface

•	 Two joysticks, 8 main buttons + 2 additional buttons (each with 2 values), and dpad (as a button
with 5 possible values)

•	 Plug in USB device, start Pd, and open martingale/pd/lib/mgHwDualAnalog.test.pd

•	 Find USB device number, and look for output

4.7. The Dual Analog Interface: Windows and Virtual

•	 Some Windows platforms may need to use a different interface

•	 Add the martingale/pd/externals/win directory to your Preferences > Path

•	 martingale/pd/lib/mgHwJoystickDualAnalog.test.pd

•	 If no other option presently, can use a keyboard based mapping

•	 martingale/pd/lib/mgHwDualAnalogVirtual.test.pd

4.8. A Hierarchy of Components

•	 A voice is single type of sound source, and elementary component (will be named *_v.pd)

•	 A synth is an instrument that takes real-time parameters and loads preset parameters stored in
banks

•	 A performance provides mappings from a controller to one or more synths, and might control
large-scale parameter management

4.9. Testing a Synth Voice

• Add the martingale/audio directory to your Preferences > Path

• open martingale/pd/lib/mgSynthBuffer_v.test.pd

4.10. Testing a Performance

•	 martingale/pd/instruments/dualAnalogPerfA.test.pd

•	 martingale/pd/instruments/dualAnalogVirtualPerfA.test.pd

57

4.11. Math and Expressions

•	 A number of math objects for data and signals: [+], [-]

•	 Always favor multiplication over division: [* .01] is better than [/ 100]

•	 For multiple multiple computations, the [expr] object is conventient

•	 Operator precedence is multiplication or division, then addition or substraction; Values can be
taken to exponents with [expr pow(3, 2)] syntax

•	 One or more value can be provided into [expr] with numbered numeric variables: $f1, $f2, etc.

•	 Left-most inlet is always hot: a bang or number is required for output

•	 The [expr~] object works with signal inlets represented by $v1

4.12. Math: Data Conversions

•	 MIDI Pitch to frequency: [mtof], [ftom], [mtof~], [ftom~]

•	 BPM to msec: [mgBpmToMs], [mgMsToBpm]

•	 Msec to frequency: [mgMsToFq], [mgFqToMs]

4.13. The Trigger Object

•	 A [trigger] object can be used to send multiple bangs or messages as fast as possible in a defined
order

•	 A [trigger] can be seen as a way to replicate message and/or bangs in a specific order

•	 Whenever going from one outlet to many inlets you must use a trigger

•	 Can use a float, list, or symbol to send a sequence of bangs or copies of the initial data

•	 Example: send a file path (as an explicit list, not a symbol) paired with a bang to trigger playback

58

4.14. A Source of Triggers: [metro]

•	 For performance interfaces, triggers will often come from a controller

•	 Automated triggers can come from a [metro]: a timed sequence of bangs

•	 On/off is specified in left inlet with 1/0

•	 Speed in milliseconds is specified either as a construction argument or through the right inlet; can
convert from BPM to msec with [mgBpmToMs]

•	 Speed can be varied dynamically

•	 Example: using [metro] to repeatedly trigger an audio file

59

• Bangs can be delayed with [delay]; messages can be delayed withÊ[pipe]

• Example: using [delay] to trigger a second sample after the first

60

4.15. Counting Events

•	 [counter] provides a convenient way to count bangs (or other events)

•	 Start and stop values can be provided as creation arguments: [counter min max]

•	 Counter can be forced to jump to new values or reset on next bang; counter can go up, down, or
back and forth

•	 Combining [counter] with [sel] is a powerful way to articulate multiples of a base duration

•	 Example: using [counter] and [sel] to create rhythmic articulations

61

4.16. A Signal Metronome: [phasor~]

• [metro] produces bangs separted by milliseconds

• [phasor~] ramps from 0 to 1 in Hertz (cycles per second)

• Can use this ramp for reading through a range, or for detecting periodic points in the cycle

• Can convert from ms to frequency with [mgMsToFq]

4.17. Lists and Arrays

• A collection of similar data in a single row accessible by an index

62

•	 Lists count from 1

Lists can be floats or symbols

•	 Arrays count from 0

Arrays have to be floats

4.18. Lists

•	 Can be all numbers in a message box

•	 Can be all symbols in a message box preceded by “list”

•	 [zl] tools (there are many), [pack], [unpack] are main processors

•	 Length: [zl len]

4.19. Storing Data for Later Use

•	 [f], [zl reg], and [symbol] allow us to store data provided through a right inlet and bang it out later
with the left inlet

•	 Very useful for when we need to hold a value, process those values, and then do something with
the original values

4.20. Breaking Lists

•	 [unpack] takes a list and provides outlets for each component

•	 Outlets return values from right to left

•	 Must declare how many components to include by specifying type of argument (f, s, etc)

•	 Example: Storing file path and playback rate in a single list and using to trigger playback

63

4.21. Building Lists

•	 [pack] permits building (concatenating) a list of any number of components

•	 Must declare how many components to include by specifying type of argument (f, s, etc)

•	 Pack only provides output when a value or bang is received in the left-most inlet: often need to
use a trigger to insert value and then bang leftmost inlet

•	 The [mgPak2] and related send output for every inlets

•	 Can use [append] and [prepend] to add single elements to lists

•	 Example: Combing file path and playback rate into a single list and using to trigger playback

64

4.22. Lists: Iterating, Grouping, Joining

• Iterating a list one (or more) elements at a time, as fast as possible: [zl iter]

• Wait until a number of items have been received, output them as a list: [zl group]

• Combine two lists: [zl join]

4.23. Lists: Slicing, Rotating, and Reversing

• Slicing from the front and back: [zl slice] and [zl ecils]

• Rotating and reversing: [zl rot], [zl rev]

• Example: Storing playback peak amplitude and playback rate into a single list to trigger playback

65

4.24. Lists: Accessing By Index

• [zl nth]

• Indices start from 1

• Must provide index first (right inlet) and then complete list (left inlet)

• Alternative functionality available from [mgListLoop]: given a list, provide bangs to loop values

66

4.25. Listening: Fennesz

• Listening: Fennesz, “Traxdata,” Hotel Paral.lel, 2004

• Listening: Fennesz, “The Point of It All,” Venice, 2004

4.26. Listening: Ikue Mori

• Listening: Ikue Mori, “The Pit & The Pendulum”, Garden, 1996

67

• Listening: Ikue Mori, “Civitella Daze”, Labyrinth, 2001

• Listening: Ikue Mori, “Day of Locusts,” Labyrinth, 2001

4.27. Pd Tutorial 3

1. The following examples demonstrate operations with Pd. Recreate the following patch
components in a Pd file and and answer the provided questions as comments in the Pd file.

68

2. Create and extend the following patch.

69

70

MIT OpenCourseWare
http://ocw.mit.edu

21M.380 Music and Technology: Live Electronics Performance Practices
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

