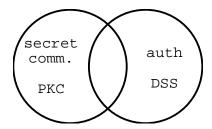
MIT 6.443J / 8.371J / 18.409 / MAS.865 Quantum Information Science April 27, 2006

Unconditional Security of QKD

- 1. Cryptography
- 2. Quantum Key Distribution: BB84
- 3. EPR Protocol
- 4. CSS Code Protocol
- 5. Secure BB84

1 Crytography



In the Vernam Cipher (one-time pad), Alice and Bob share a secret key k.

Eve has m + k, but

$$I(m+k,m) = H(m+k) - H(m+k/m)$$
$$= H(m+k) - H(k)$$
$$= 0$$

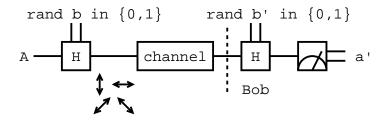
The key k is called a "pad." It is referred to as "one-time" because k can't be reused.

<u>Distribution of k \Rightarrow</u> "security criterion"

$$I(\text{Eve}, \text{key}) = 2^{-l}$$

where resources required $\sim \text{poly}(l)$.

2 Quantum Key Distribution: BB84



$$\begin{array}{rcl} a & = & |0\rangle, |1\rangle \\ & = & \uparrow, \leftrightarrow \end{array}$$

Keep all bits for which b' = b. A and B hash obtain key k.

Thm. Info gain \Leftrightarrow disturbance. In any attempt to distinguish non-orthogonal states $|\psi\rangle$ and $|\phi\rangle$, information gain is only possible at the expense of disturbing the states.

Proof. WLOG assume

$$|\psi\rangle|u\rangle \longrightarrow |\psi\rangle|v\rangle$$

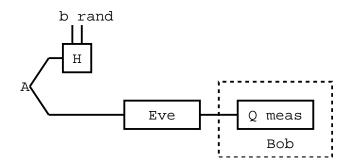
$$|\phi\rangle|u\rangle \longrightarrow |\phi\rangle|u'\rangle$$

$$\langle\phi|\psi\rangle = \langle\phi|\psi\rangle\langle v|v'\rangle$$

$$1 = \langle v|v'\rangle$$

$$|v\rangle = |v'\rangle$$
contradiction

Problem: collective attacks



3 EPR Protocol

Perfect EPR Pair \Rightarrow good key.

• A announces b

- Random checks (test Bell's inequalities)
- Entaglement purification $\Rightarrow m$ EPR pairs
- Measure, get key

Q: what is Eve's mutual information with k? We want:

$$I \sim e^{-l}$$

 \Rightarrow bound Eve's errors

Does classical statistics apply? The most general model for Eve is:

Eve can be treated as an error on the state $|00\rangle + |11\rangle$:

$$\begin{array}{c} & \underline{\text{Error}} \\ |00\rangle + |11\rangle \rightarrow |00\rangle + |11\rangle & I \\ |00\rangle + |11\rangle \rightarrow |00\rangle - |11\rangle & Z \\ |00\rangle + |11\rangle \rightarrow |01\rangle + |10\rangle & X \\ |00\rangle + |11\rangle \rightarrow |01\rangle - |10\rangle & iY \end{array}$$

Define:

$$\Pi_{bf} = |\beta_{01}\rangle\langle\beta_{01}| + |\beta_{11}\rangle\langle\beta_{11}|$$

$$\Pi_{pf} = |\beta_{10}\rangle\langle\beta_{10}| + |\beta_{11}\rangle\langle\beta_{11}|$$

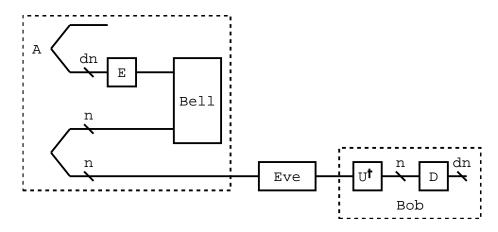
Claim: we can use classical statistics because $[\Pi_{bf}, \Pi_{pf}] = 0$. Measure the following randomly on random pairs:

$$\Pi_{bf}, \qquad I - \Pi bf$$
 $\Pi_{pf}, \qquad I - \Pi pf$

Theorem: Random Sampling. Consider 2n bits with $2\mu n$ ones. Measure n bits, obtaining kn ones. $Prob[|k-\mu| > \epsilon] \sim e^{-O(n^2\epsilon)}$ as $n \to \infty$ (Chernoff bound).

\Rightarrow How to purify?

Let $\delta_n = n - nt$, where t is the estimated number of errors. Let E, D be an encoder pair for a $[[n, \delta_n]]$ QECC. Result: QECC garantees:



$$F(\rho, |\beta_{00}\rangle^{\otimes \delta n})^2 \ge 1 - 2^{-l}$$

Goal: Bound I(Eve, key)

Lemma: High Fidelity \Rightarrow low entropy. If $F(\rho, |\psi\rangle)^2 > 1 - 2^{-l}$, then $S(\rho) < (n+l)2^{-l}$.

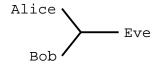
Proof. If $\langle \psi | \rho | \psi \rangle > 1 - 2^{-l}$, then the maximum eigenvalue of ρ is greater than $1 - 2^{-l}$.

$$S(\rho) < S(\rho_{\text{max}}) = S \left(\begin{bmatrix} 1 - 2^{-l} & & \\ & x & \\ & & x \\ & & \ddots \end{bmatrix} \right)$$

where $x = \frac{2^{-l}}{2^n - 1}$.

$$S(\rho_{\text{max}}) = -(1 - 2^{-l})log(1 - 2^{-l})$$
$$= -2^{-l}log\frac{2^{-l}}{2^n - 1}$$
$$\sim (n + l)2^{-l}$$

Now Apply Holevo's theorem.



$$I(\text{Eve}, A \text{and} B) < S(\rho) < O(2^{-l})$$

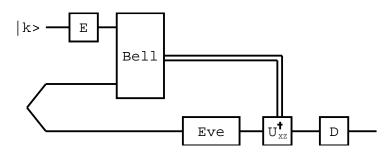
Problems:

- 1. need efficient codes (CSS works)
- 2. need quantum memory
- 3. need quantum computer

The last two are done away with by BB84.

4 CSS Code Protocol

Step 1: EPR \rightarrow Random Codes The circuit is equivalent to:



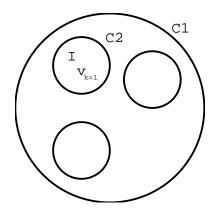
$$|\psi\rangle = DU_{xz}^{\dagger} \mathcal{E}_{\text{Eve}} U_{xz} E |k\rangle$$

Also equivalent to:

Step 2: Let C_1, C_2 be classical $[n, k_1]$ and $[n, k_2]$ codes correcting up to t errors with $C_2 \subset C_1$. $\overline{\mathrm{CSS}(C1, C2)}$ is a $[[n, k_1, k_2]]$ quantum code with states:

$$|\psi_k\rangle = \frac{1}{|C_2|} \sum_{w \in C_2} |v_k + w\rangle,$$

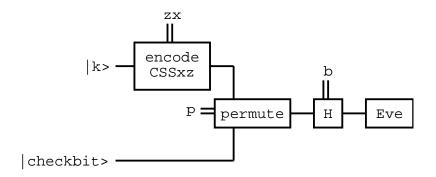
where v_k is a coset representative of C_2 in C_1 .



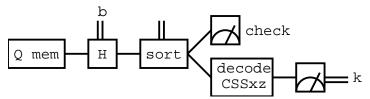
Define: $\mathbf{CSS}_{zx}(C_1, C_2)$

$$|\psi_{kzx}\rangle = \frac{1}{\sqrt{|C_2|}} \sum_{w \in C_2} (-1)^{v_k + w - z}$$

CSS code protocol:



• Alice announces x, z, p, b



- Bob does:
- If error rate > tn, abort

5 Secure BB84

1. Remove Quantum Computer Bob doesn't care about z errors.

$$\rho = \frac{1}{2^n} \sum_{z} |\psi_{kxz}\rangle \langle \psi_{kxz}|$$

Alice need not reveal z!

$$\rho = \frac{1}{|C_2|} \sum_{w \in C_2} |v_k + w + x\rangle \langle v_k + w + x|$$
= |random bit string\range|

2. Remove Quantum Memory Double number of qubits and bob measures random b', keep if b' = b.

Final Protocol



- 1. A and B discard if $b_i \neq b'_i$
- 2. compare check bits, obtain $A: x, B: x + \epsilon$
- 3. A announces $x v_k$
- 4. B computes $x + \epsilon (x v_k) = \epsilon + v_k$
- 5. correction in $C_1 \to v_k$
- 6. Both compute coset index $v_k \to k$