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1 Crytography

In the Vernam Cipher (one-time pad), Alice and Bob share a secret key k.

/ key k \

A B

msgm > m'
m+k m'+k=m

Eve has m + k, but

I(m+k,m) = H(m+k)—H(m+k/m)

The key k is called a “pad.” It is referred to as “one-time” because k can’t be reused.



Distribution of k£ = “security criterion”

I(Eve, key) = 27!

where resources required ~ poly(/).

2 Quantum Key Distribution: BB84

rand b in {0,1} rand b' in {0,1}

A H channel
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Keep all bits for which & = b. A and B hash obtain key k.

Thm. Info gain < disturbance. In any attempt to distinguish non-orthogonal states |1) and
|p), information gain is only possible at the expense of disturbing the states.

Proof. WLOG assume

|} |w) — ) |v)
|9)|w) — |6)|u')
(o) = (@li)(v]v)
1 = (v]v')
|v) = V)
contradiction

Problem: collective attacks



b rand

Eve

3 EPR Protocol

Perfect EPR Pair = good key.

e A announces b

b
B does

e Random checks (test Bell’s inequalities)

e Entaglement purification = m EPR pairs

e Measure, get key
Q: what is Eve’s mutual information with k? We want:
-1

I ~e

= bound Eve’s errors
Does classical statistics apply? The most general model for Eve is:

A
|00> + 11> 4
Eve B

Eve can be treated as an error on the state [00) 4 |11):

Error
00) + [11) — [00) + |11) [
00) + |11) — [00) —|11)  Z
00) + |11) — |01) + [10) X
100) + |11) — [01) — [10) Y

3



Define:

My = |Bo1){Bor| + |Br1) (B
Iy = [Bi0)(Biol + |B11) (Bl

Claim: we can use classical statistics because [y, IT,¢] = 0. Measure the following randomly
on random pairs:

M, [I-—TIbf
M,y [ —Tpf

Theorem: Random Sampling. Consider 2n bits with 2un ones. Measure n bits, obtaining
kn ones. Prob[lk — pu| > €] ~ e C") asn — oo (Chernoff bound).

= How to purify?
Let 6,, = n — nt, where t is the estimated number of errors. Let E, D be an encoder pair for
a [[n,0,]] QECC. Result: QECC garantees:

Eve

Bell |:

F(p, |Bo0)*")? 21— 27"
Goal: Bound I(Eve, key)
Lemma: High Fidelity = low entropy. If F(p,|¢))? > 1—27 then S(p) < (n+1)27".
Proof. If {(1|p|Y)) > 1 — 27!, then the maximum eigenvalue of p is greater than 1 — 27,
1 -2

S(p) < S(pmax) = S x



S(pmax) = _(1 - 2_l)l0.g<1 - 2_l)
ll 2_1
g —2_
%o 1
~ (n+1)27"

Now Apply Holevo’s theorem.
Alice
>_ cve
Bob

I(Eve, AandB) < S(p) < O(27)
Problems:
1. need efficient codes (CSS works)
2. need quantum memory

3. need quantum computer

The last two are done away with by BB8&4.

4 CSS Code Protocol

Step 1: EPR — Random Codes The circuit is equivalent to:

k> — E |—

—

Bell

Eve U’;Z

|¢> = DUxngEveszE‘@



Also equivalent to:

Xz
1l

k> E Uy, Eve ut, D

Step 2: Let Cy, Cy be classical [n, k1] and [n, k2] codes correcting up to t errors with Cy C C4.

CSS(C1, C2) is a [[n, k1, k2] quantum code with states:

1
|Whk) = A > ok + w),

weCy

where vy, is a coset representative of Cy in (.

C1l

ole

Define: CSSm(Cl, CQ)

CSS code protocol:

ZX
|
k> — encode
CSSxz b
|
P H permute H Eve

|checkbit>

e Alice announces z, z,p, b



decode
cssxz[ VA=K

b
[l [l | check
Q meml— H sort <

e Bob does:

e If error rate > tn, abort

5 Secure BB&4

1. Remove Quantum Computer Bob doesn’t care about z errors.

1

Alice need not reveal z!

1
p = Z |vg + w + z) (v + w + x|
‘02’10602

= |random bit string)

2. Remove Quantum Memory Double number of qubits and bob measures random ',
keep if ' = b.

Final Protocol

random

bits H Eve H /7&

1. A and B discard if b; # b}

2. compare check bits, obtain A:z,B :x +¢
3. A announces x — v

4. B computes x + € — (x — vg) = € + vy,

5. correction in C7 — vy,

6. Both compute coset index vy — k



