Lecture # 2, Quantum Computation 2: QEC Criteria

Lecture notes of Isaac Chuang, transcribed by Jennifer Novosad

Outline:

0. Review

1. Classical Coding

2. Q. Coding

3. Operator Measurement and Error Syndromes
4. Shor 9 Qubit Code

5. Quantum Error correction Codes Criteria (QEC criteria)



0. Review

p=p
e(p) =>4 EypE! where ok E.El =T



1. CLASSICAL CODING

FIG. 1: a binary symmetric channel

P = prob of error

Definition: A Classical [nk,d] code is a set of 2% n-bit strings which have a minimum
Hamming distance d.

Definition: A Hamming distance between two bit strings is d(z,y) = w(z @ y) where &
is the x-or operator, and w is an operation that counts the number of ones.

Example: 0 (ogicary = 000, 15, = 111 is a [3,1,3] code

could send could receive prob decode prob. of error
07, = 000 000 (1-p)3 0
001 p(1—p)?
010 p(1—p)? 0
100 p(1—p)? 0
011 p*(1-p) 1 (1 —p)+
101 p*(1-p) 1 p*(1—p)+
110 p*(1—p) 1 p*(1—p)+
111 p° 1 P’

So, the total probability of error is 3p? — 2p* = O(p?)



2. QUANTUM CODING

1995: Thought error correction to be impossible!
1. States collapse on measurement

2. Classically error occurs or does not occur. In Q. M., errors are continuous: «|0) +

B11) = (a+¢)[0) + ...

3. No cloning Thm prohibits copying, so cannot create «|0) + /3|1) — (a|0) +5|1))(«|0) +
A1) (al0) + 6[1))

The Solutions:

1. Measure only the effect of the environment, not the state (i.e. did an error occur?)

2. & 3. Orthogonalize errors using entanglement: the environment has done one thing, or

another, in an entangled way. a|didsomething) + (3|didnothing)

Example: The Quantum Bit Flip Code:
0) = 000)
1) = 111)
(Wr) =a|0) + Bl1L)
suppose €(p) = (1 — P)p+ PXpX where P is the probability of error and X is the error
operator.

A B

Define: An [[n,k]] quantum code C is a k-qubit subspace of an n-qubit Hilbert space. So,

for our example, k=3, n=1.



Input B Output prob decode prob. of error

|¥) = «|000) + B|111) «/000) + B|111) (1-p)3 0
@|001) + 3[110) p(1—p)? 0
«|010) + 3|101) p(1—p)? 0
«|100) + 3|011) p(1—p)? 0
al011) +B[100)  p*(1 —p) 1 p*(1 —p)+
al101) +5|010)  p*(1 —p) 1 p*(1 —p)+
al110) 4+ 41001)  p*(1 —p) 1 p*(1—p)+
a|111) + 3]000) p3 1 P

3. OPERATOR MEASUREMENT

Given U with eigenvalues %1, eigenvectors |u.)

Definition: Measuring U

measurement result

Z

0> H H /X —

colud + : " 19>
clju>

Initially, the state is |0)(Coluy) + Cy|u_))

After the first Hadamard, %(]m + (1)) (Coluy) + Cilu-))

After the Controlled-U gate, \%(|O>(C’o|u+> + Cilu_)) + |1)(Coluy) — Cilu_)))

After the last Hadamard, %(|0> + 1)) (Coluy) + Crlu)) + (|0) — |1))(Coluy) — Chlu—))
= [0)Coluy) + [1)Chfu-)

If the measurement is z = 0, then |Psi) = |uy). (With prob C2, 2 = 0)

If the measurement is z = 1, then |Psi) = |u_). (With prob C%,z = 1)

3.1. Error Correction Syndrome Measurement

U =o0,02=0,0,1

1,2
z7z
Uy = 0?03 = Io.0,



state U, U,

a]000) + (3]111) 0 0
]001) + 3]110) 0 1
a]010) + 3]101) 1 1
a[100) + 53]011) 1 0

TABLE I: 0 represents a +1 eigenstate of U;, and 1 represents a -1 eigenstate.
Steps to Error Correction:
1. measure syndrome operators (here, U; & Uy
2. Apply recovery operator R (here, 00 — I, 01 — 03, 11 — 02, 10 — o}

T x

To create the initial state |Psir):

oc|0> +B|1> ®
o> S, 000> +B[111>
M
0> U

And then to error correct:

o> {H}—p—H}—{~
] 5 B
|
»— € 6} o R -
|
— (08 -
0> H H o~

note: the double lines indicate classical information.



Claim:
This scheme also corrects for a small continuous rotation error!

We will do this on one bit to demonstrate.

160 160y

e(p) = e pe
e % = R,(2¢)

R,1(26)| W) = |U) — decl|Psi) = |P)
The fidelity is £ = /[(¥[W)[2 21 —¢

Syndrome measurement collapses error into either I or o}
F(R(=(p), W) 27 22 1 — &

Example: The Phase Flip Code

6phaseflip(p) = (]- - P)p + PUzPUz

Recall Ho,H =0,, Ho.H = 0,

SO, nghaseflip(HpH)H = Evbitflip

Explicitly,
al> +]1> H] L
» D H— &€ R~
> —
e T L

[=> 4 0> D/ sqrt2)

For the bit flip: U, = 0,0.1 and U; = 0,0,

For the phase flip: U, = 0,01 and Uy = [0,0,

Claim:

arbitrary errors can be described as o,, 0., and 0,0, errors
Proof Argument:

elp) =2y Ekali

where we are guaranteed ), EkEZ =1

Recall pauli matrices o; = I, 0,,0,,0., and that o, = —io,0,

Since o is a basis for all 2x2 hermitian matrices, let E, = i Cr;05.



Then, e(p) = >4 Cn; Ck 05001

0) 5y 0360
3T AT LG the “Chi representation or OSR”

Example: recall

R.(2¢)|¥) = |Psi) — i€o,|Psi)

e(p) = p —i€coyp — i€po, + €20,p0,

The —ieo,p — iepo, term disappears in the syndrome measurement, and the p + €20, po,
term remains.

The result is that the syndrome measurement projects the environment into a definite

error state.



4. SHOR 9 QUBIT CODE

102) = (|000) + [111))%*/v/8
[12) = (|000) — [111))®%/v/8
this code will correct ANY single qubit error.

Syndrome Measurements:

1.2 2.3 4.5 5.6 -7
z

for a bit flip: o,07,050;,0,02, 020, 0

)
.12 3.4 45 5.6 6
for a phase flip: o,07,0,0,,0,0.,0.0,,0,

8 8.9
0,,0;0,
7 +8+9
Oz 02045
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5. QEC CRITERIA/CONDITIONS

Channel: E(p) =), EypEf
Thm: Let C be a quantum Code defined by the orthonormal states { [¥;) }

J a quantum recovery operation R correction € on C iff:
1. Orthogonality:

if I have 2 errors j and Kk,

(U)|EIE W) =0
2. Nondeformation criteria:

(U)| Ef B | W) = diVI

this is so you cannot distinguish shrinking on different code words, all shrinking is the

same.
€
Ic]
No Overlap or Unique Deformation
e

note that dj implies probability loss, but not information loss, ), dy = 1 since
S ElE, =1

Proof: (—)

Let P =), |U;) (¥ (project onto C)

note PE!E},P = didj P (¥)

note by Polar decomposition (extracting rotation and shrinkage) P = Uy/ PE,iEkP =
V/d,U, P where /d}, is the shrinkage and U, P is the rotation.

1. Syndrome measurement:



EPU}  UyPE]
Ve Vi
By (*), the Pys are orthogonal:

Vk # j, PuP; o< Uy PEJE;PU} = 0

let P, = UpPU;} =

measure P, output k syndrome.
2. Apply Recovery R

R(p) = 32, UL PupPUy

note for |¥) € C,

T T )
ULPE, W) = Y, Plw) = 208 0) = \/6,4/)
Thus:

R(=(10)(¥]) = R(X; Ej[WNY|E]) = 3,  ULRE[ P = 3, didjnP = [9) (V|
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