
Lecture # 2, Quantum Computation 2: QEC Criteria 

Lecture notes of Isaac Chuang, transcribed by Jennifer Novosad 
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0. Review 

χ ≡ χ∗ 

β(χ) = Ek χEk
† where 

� 
Ek E

† = I
k k k 
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1. CLASSICAL CODING
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FIG. 1: a binary symmetric channel 

P = prob of error 

Definition: A Classical [n,k,d] code is a set of 2k n-bit strings which have a minimum 

Hamming distance d. 

Definition: A Hamming distance between two bit strings is d(x, y) = w(x ∃ y) where ∃ 

is the x-or operator, and w is an operation that counts the number of ones. 

Example: 0L(ogical) = 000, 1L = 111 is a [3,1,3] code 

could send could receive prob decode prob. of error 

0L = 000 000 (1 − p)3 0 

001 p(1 − p)2 0 

010 p(1 − p)2 0 

100 p(1 − p)2 0 

011 p2(1 − p) 1 p2(1 − p)+ 

101 p2(1 − p) 1 p2(1 − p)+ 

110 p2(1 − p) 1 p2(1 − p)+ 

111 p3 1 p3 

3So, the total probability of error is 3p2 − 2p = O(p2) 
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2. QUANTUM CODING 

1995: Thought error correction to be impossible! 

1. States collapse on measurement 

2. Classically error occurs or does not occur. In Q. M., errors are continuous: � 0 +| →
�	 0 + ...|1→ ≡ (� + β)| →

3. No cloning Thm prohibits copying, so cannot create �|0→+ �|1→ ≡ (�|0→+ � 1→)(� 0 +| | →
� 1→)(� 0 + � 1→)| |	 → |

The Solutions: 

1. Measure only the effect of the environment, not the state (i.e. did an error occur?) 

2. & 3. Orthogonalize	 errors using entanglement: the environment has done one thing, or 

another, in an entangled way. � didsomething→ + � didnothing→|	 |

Example: The Quantum Bit Flip Code:


0L = 000
| → | → 
1L = 111| → | → 
�L = � 0L + � 1L| → | → | →

suppose β(χ) = (1 − P )χ + P XχX where P is the probability of error and X is the error


operator. 

A ≡ B 

Define: An [[n,k]] quantum code C is a k-qubit subspace of an n-qubit Hilbert space. So, 

for our example, k=3, n=1. 
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Input � Output prob decode prob. of error 

|� = � 000 + � 111 � 000 + � 111 (1 − p)3 0� | � | � | � | �


� 001 + � 110 p(1 − p)2 0


� 010 + � 101 p(1 − p)2 0 

� 100 + � 011 p(1 − p)2 0 

� 011 + � 100 p2(1 − p) 1 p2(1 − p)+ 

� 101 + � 010 p2(1 − p) 1 p2(1 − p)+ 

� 110 + � 001 p2(1 − p) 1 p2(1 − p)+ 

3�|111 + � 000 p3 1 p

3. OPERATOR MEASUREMENT 

Given U with eigenvalues ±1, eigenvectors u| ±→ 
Definition: Measuring U 

H H0 

u+C0 
U 

measurement result 
z 

� 

u-C1 

Initially, the state is 0→(C0 u+ + C1 u−→)| | → |
After the first Hadamard, �

2
1 ( 0 + 1→)(C0 u+ + C1 u−→)| → | | → |

After the Controlled-U gate, �
2 
(1 0→(C0 u+ + C1 u−→) + 1→(C0 u−→))| | → | | |u+→ − C1|

After the last Hadamard, �
2 
(1 0 + 1→)(C0 u+ + C1 u−→) + ( 1→)(C0 u| → | | → | |0→ − | |u+→ − C1| −→) 

= 0 C0 u+ + 1 C1 u| → | → | → | −→ 
If the measurement is z = 0, then |Psi = u+ . (With prob C0

2, z = 0) → | →
If the measurement is z = 1, then Psi→ = |u−→. (With prob C1

2, z = 1) |

3.1. Error Correction Syndrome Measurement 

= δ1δ2 = δz δz IU1 z z 

= δ2δ3 = Iδz δzU2 z z 
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state U1 U2 

� 000 + � 111 0 0 

� 001 + � 110 0 1 

� 010 + � 101 1 1 

� 100 + � 011 1 0 

TABLE I: 0 represents a +1 eigenstate of Ui, and 1 represents a -1 eigenstate. 

Steps to Error Correction: 

1. measure syndrome operators (here, U1 & U2 

2. Apply recovery operator R (here, 00 ≡ I, 01 ≡ δ3, 11 ≡ δ2, 10 ≡ δ1 
x x x 

To create the initial state P siL :| →

0 + � 1 

0 

0 

000 + � 111 

And then to error correct: 

0 

0 

� 

αz 

αz αz 

αz 

H H 

H H 

Ψ R 

note: the double lines indicate classical information. 
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Claim:


This scheme also corrects for a small continuous rotation error!


We will do this on one bit to demonstrate.

iεδx χeiεδx 

e

β(χ) = e
−εδx = Rx(2ε) 

Rx1 (2ε) � = �→ − iεδ1 Psi→ ∈ �∗| → ∝ |

 

x| | → 
The fidelity is F = |√�|�∗→|2 ∝= 1 − ε 

Syndrome measurement collapses error into either I or δ1 
x 

F (R(β(χ)), �→) ∝ = 1 − ε2 =? ∝|
Example: The Phase Flip Code 

βphasef lip(χ) = (1 − P )χ + Pδz χδz 

Recall HδxH = δz , Hδz H = δx 

So, Hβphasef lip(HχH)H = βbitf lip 

Explicitly, 

� 0 + � 1 

0 

0 

H 

H 

H 

H 

H 

H 

Ψ R 

0L = |+++ 

1L = | - - ­ = 0 + 1 / sqrt(2) 
_ =  0  -  1 / sqrt(2) 

For the bit flip: Uo = δz δz I and U1 = Iδz δz 

For the phase flip: Uo = δxδxI and U1 = Iδxδx 

Claim: 

+ 

arbitrary errors can be described as δx, δz , and δxδz errors 

Proof Argument: 

β(χ) = Ek χEk
†

k 

where we are guaranteed Ek Ek
† = Ik 

Recall pauli matrices δj = I, δx, δy , δz , and that δy = −iδx δz 

Since δj is a basis for all 2x2 hermitian matrices, let Ek = j Ckj δj . 
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Then, β(χ) = kjj� Ckj Ck
�
j� 
δjχδj� 

β(χ) jj� �jj� δjχδj� 

is the “Chi representation or OSR”


Example: recall


Rx(2ε) � = P si→ − iεδx P si
| → ∝ | | → 
β(χ) = χ − iεδxχ − iεχδx + ε2δxχδx 

The −iεδxχ − iεχδx term disappears in the syndrome measurement, and the χ + ε2δxχδx 

term remains. 

The result is that the syndrome measurement projects the environment into a definite 

error state. 
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4. SHOR 9 QUBIT CODE 

|0L→ = ( 000 + 111→)�3/
⊕

8| → |
|1L→ = ( 000→ − 111→)�3/

⊕
8| |

this code will correct ANY single qubit error. 

Syndrome Measurements: 

for a bit flip: δ1δ2, δ2δ3, δ4δ5, δ5δ6, δ7δ8, δ8δ9 
z z z z z z z z z z z z 

for a phase flip: δ1 δ2, δ3δ4, δ4δ5 , δ5δ6, δ6δ7, δ8δ9 
x x x x x x x x x x x x, 
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5. QEC CRITERIA/CONDITIONS


Channel: E(χ) = EkχEk
†
k 

Thm: Let C be a quantum Code defined by the orthonormal states { |�l→ } 

� a quantum recovery operation R correction β on C iff: 

1. Orthogonality: 

if I have 2 errors j and k, 

√�l|E†
j Ek �l = 0 |
 → 

2. Nondeformation criteria:


√�l|E†
k = dk�lEk|�l→ 

this is so you cannot distinguish shrinking on different code words, all shrinking is the 

same. 

C 

C 

C 

C 

C 

C 

Ψ 

C 

No Overlap or Unique Deformations 

note that dk implies probability loss, but not information loss, dk = 1 sincek 

Ek
†
kEk = 1 

Proof: (≡) 

Let P = (project onto C) l |�l→√�l| 
note PE†

j EkP = dkαjkP (*) 

note by Polar decomposition (extracting rotation and shrinkage) EkP = Uk PE†
kEkP = 

⊕
dkUkP where 

⊕
dk is the shrinkage and UkP is the rotation. 

1. Syndrome measurement: 
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† †
UkP E

klet Pk = UkPUk
† = EkP U

k = �
dk

�
dk 

By (*), the Pks are orthogonal: 

= j, PkPj ∀ UkPE†EjPU † = 0 �k k j∼
measure Pk output k syndrome. 

2. Apply Recovery R 

R(χ) = Uk
†PkχPkUkk 

note for |�→ � C
† 

, 
† 

k �jkdkP
U †PkEj|� = U UkP E

k EjP � = |� = 
⊕

dkαjk �k → �
dk 

| → �
dk 

→ | → 
Thus: 

R(β(|�→√�|) = R( j Ej|�→√�|Ej
T ) = 

� 
U †PkEj

†PkUk = jk dkαjkP = |�→√�|jk k


