Lecture 11: Quantum Random Walks

Lecturer: Peter Shor Scribe: Isaac Kim

1 Quantum Random Walks

- Exponential speedups on contrived problems \rightarrow Childs et al.
- $\sqrt{}$ speedups on some applicable problems \rightarrow Ambainis's algorithm for element distinctness

2 Grover's Algorithm

- \bullet We have N elements
 - One of the are 'marked' \rightarrow Find it!
 - * Classically : O(N)
 - * Quantum Mechanically : $O(\sqrt{N})$
- Strategy
 - Use two operations
 - * $G\left|i\right\rangle = -\left|i\right\rangle$ where i is the marked one, $G\left|j\right\rangle = \left|j\right\rangle$ $\forall i \neq j$
 - * $M: |\psi\rangle = \sum_{j=1}^{N} \frac{1}{\sqrt{N}} |j\rangle \rightarrow |\psi\rangle \ (M = 2 |\psi\rangle \langle \psi| I)$
 - Start in $|\psi\rangle$
 - Perform $(MG)^t$ for $t = \frac{\pi}{4}\sqrt{N}$
- Why does it work?
 - The state stays in a subspace generated by $|\psi\rangle$, $|i\rangle$.

Isaac Kim

3 Generalization

- Suppose you have a $\sqrt{N} \times \sqrt{N}$ grid.
- We will use following operations
 - 1. Move to adjacent vertex
 - 2. Ask "Is this vertex marked?"
- For $\sqrt{N} \times \sqrt{N}$ grid, there is $O(\sqrt{N} \log N)$ quantum algorithm.
- For $dim \geq 3$ grids, $O(\sqrt{N})$ quantum algorithm exists.

4 Element Distinctness

- We have function $f[N] \to [M]$
 - $-\exists i, j \quad s.t. \quad f(i) = f(j), i \neq j$
 - Assume i and j are unique.
- Classically : Best way is to sort the elements, with time complexity $O(N \log N)$, O(N) queries.
- Buhram $O(N^{3/4})$ queries
- Ambainis $O(N^{2/3})$ queries \to Proven to be the lower bound (Shi)

4.1 Several Definitions and Generic Settings

- 1. Define graph
 - S: Set of r elements
 - S': Set of r+1 elements (if $S \subseteq S'$)
- 2. Mark a set if $f(i) = f(j), i, j \in S$
- 3. Start in a superposition of all sets. Perform walk, search until you find a marked set.
 - Probability of a set being marked is $O(\frac{r^2}{N^2})$.

- Each takes time r to check a set. $\rightarrow \frac{N^2}{r^2} \log r$
- 4. Keep $f(i) \ \forall i \in S$
 - $A: |s\rangle |y\rangle \rightarrow |s\rangle \left(-1 + \frac{2}{N-r} |y\rangle + \frac{2}{N-r} \sum_{y' \in S, y' \neq y} |y'\rangle\right)$
 - $B: |s\rangle |y\rangle \to |s\rangle (-1 + \frac{2}{r+1}) |y\rangle + \frac{2}{r+1} \sum_{y' \in S, y' \neq y, S' = (S \{y\}) \cup \{y'\}} |s'\rangle |y'\rangle$

4.2 Algorithm

- 1. Start in a superposition $\frac{1}{\sqrt{\binom{N}{r}(N-r)}} \sum_{|S|=r,y \notin S} |S\rangle |y\rangle$
 - Number of elements in $S: r = O(N^{2/3})$ (Why? \to Shown in the last part)
- 2. Query elements $f(i), i \in S \cup \{y\}$. Get $\sum |s\rangle |y\rangle \otimes_{i \in S} f(i) \times f(y)$
- 3. Repeat $\frac{N}{r}$ times
 - Apply phase (-1) to marked states.
 - Apply $(AB)^t$, $t = O(\sqrt{r})$
 - Measure state. Find f(i) = f(j) with probability $\epsilon > 0$.

4.3 Proof

The walk stays in a 5-dim subspace. Since

- $\frac{1}{\binom{N-2}{r}(N-2-r)}\sum |S,y\rangle$: $S\cup y$ contains no duplicated elements.
- $\frac{1}{\binom{N-2}{r}(N-2-r)}\sum |S,y\rangle$: S contains 1, y not duplicated
- $\frac{1}{\binom{N-2}{2}(N-2-r)}\sum |S,y\rangle$: S contains 2, y not duplicated
- $\frac{1}{\binom{N-2}{2}(N-2-r)}\sum |S,y\rangle$: S contains 0, y duplicated
- $\frac{1}{\binom{N-2}{r}(N-2-r)} \sum |S,y\rangle$: S contains 1, y duplicated

Lemma: Suppose U_1 , U_2 are unitaries on some O(1)-dimensional subspace, where U_1 is a reflection.

$$U_1 |\varphi_{good}\rangle = - |\varphi_{good}\rangle$$

$$U_1 |\varphi\rangle = |\varphi\rangle (\langle \psi | \varphi_{good}\rangle = 0)$$

4 Isaac Kim

 U_2 is real and $U_2 |\varphi_{start}\rangle = |\varphi_{start}\rangle$. Other eigenvalues $e^{i\theta}$, $e^{-i\theta}$, where $\epsilon < \theta < 2\pi - \epsilon$. Let $\langle \varphi_{good} | \varphi_{start} \rangle = \alpha$. Then, $\exists t, t = O(\frac{1}{\alpha})$, so after t, iterations

$$|\langle \varphi_{qood}| (U_1 U_2)^t | \varphi_{start} \rangle| \leq \delta$$

where $\delta > 0$ depends on ϵ , not α .

BA has eigenvalue $O(\frac{1}{\sqrt{r}}$ and for $e^{i\theta}$, $\theta = O(\frac{1}{\sqrt{r}})$. Therefore, $(BA)^{\sqrt{r}}$ has eigenvalue $e^{i\theta}$, where $\theta > \epsilon > 0$.

Now we need to iterate $O(\frac{1}{\sqrt{\alpha}})$ times, where $\alpha = \langle \varphi_{good} | \varphi_{start} \rangle$.

- φ_{start} : Superposition of all $|S\rangle$
- φ_{good} : Superposition of all marked $|S\rangle$

Since $|\langle \varphi_{start}|\varphi_{good}\rangle|$ = portions of marked $|S\rangle$ s and $\alpha = \sqrt{r^2/N^2} = \frac{r}{N}$, total time is

$$O(r + \frac{N}{r}\sqrt{r}) = O(r + \frac{N}{\sqrt{r}})$$

which is minimized by taking $r = O(N^{2/3})$. \rightarrow Running time becomes $O(N^{2/3})$.