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Scribe: Isaac Kim 

1 Quantum Random Walks 

•	 Exponential speedups on contrived problems → Childs et al. 

√
speedups on some applicable problems → Ambainis’s algorithm for element • 

distinctness 

2 Grover’s Algorithm 

We have N elements • 

–	 One of the are ‘marked’ Find it! →

∗	 Classically : O(N) 

∗	 Quantum Mechanically : O(
√
N) 

•	 Strategy 

–	 Use two operations 

i� = i� where i is the marked one, G j� = i = j∗ G | − |�N	

| |j� ∀ �
1√
N 

:	 ψ� =∗ M | ψ� (M = 2 ψ − I)j� → | |ψ� � ||j=1 

–	 Start in |ψ� 
√

π 
4 

– Perform (MG)t for t N
=


•	 Why does it work? 

– The state stays in a subspace generated by |ψ�, |i�. 
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3 Generalization 

Suppose you have a 
√
N ×

√
N grid. • 

•	 We will use following operations 

1. Move to adjacent vertex 

2. Ask “Is this vertex marked?”


For 
√
N ×

√
N grid, there is O(

√
N log N) quantum algorithm.
•


For dim ≥ 3 grids, O(
√
N) quantum algorithm exists.
• 

4 Element Distinctness 

•	 We have function f [N ] → [M ] 

–	 ∃i, j s.t. f(i) = f(j), i = j 

–	 Assume i and j are unique. 

•	 Classically : Best way is to sort the elements, with time complexity O(N log N), 

O(N) queries. 

•	 Buhram O(N3/4) queries 

•	 Ambainis O(N2/3) queries → Proven to be the lower bound (Shi) 

4.1 Several Definitions and Generic Settings 

1. Define graph 

S	 : Set of r elements • 

•	 S � : Set of r+1 elements (if S ⊆ S �) 

2. Mark a set if f(i) = f(j), i, j ∈ S 

3. Start in a superposition of all sets. Perform walk, search until you find a marked 

set. 

2r•	 Probability of a set being marked is O(
N2 ). 
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Each takes time r to check a set. → N2 

log r2r
• 

4. Keep f(i) ∀i ∈ S 

A : s� (−1 + 2 y�+ 
N

2 
−r y�∈S,y�=y y

��)• |s� |y� → |
N−r 

| � 
� |

2B : s� (−1 + 2 • |s� |y� → |
r+1 

) |y�+ 
r+1 y�∈S,y�=� y,S�=(S−{y})∪{y�} |s�� |y�� 

4.2 Algorithm 

1. Start in a superposition q 1 

(N S =r,y /
r )(N−r) 

| | ∈S |S� |y� 

• Number of elements in S : r = O(N2/3) (Why? → Shown in the last part) 

2. Query elements f(i), i ∈ S ∪ {y}. Get i∈S f(i)× f(y)|s� |y� ⊗

3. Repeat N times 
r 

• Apply phase (−1) to marked states. 

• Apply (AB)t , t = O(
√
r) 

• Measure state. Find f(i) = f(j) with probability � > 0. 

4.3 Proof 

The walk stays in a 5­dim subspace. Since 

1 

(N−2 S, y� : S ∪ y contains no duplicated elements. • 
r )(N−2−r) 

|

1 

(N−2 S, y� : S contains 1, y not duplicated • 
r )(N−2−r) 

|

1 

(N−2 S, y� : S contains 2, y not duplicated • 
r )(N−2−r) 

|

1 

(N−2 S, y� : S contains 0, y duplicated • 
r )(N−2−r) 

|

1 

(N−2 S, y� : S contains 1, y duplicated • 
r )(N−2−r) 

|

Lemma : Suppose U1, U2 are unitaries on some O(1)­dimensional subspace, 

where U1 is a reflection. 

U1 ϕgood� = ϕgood�| − |

U1 ϕ� = ϕ� (�ψ ϕgood� = 0)| | |
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U2 is real and U2 ϕstart� = ϕstart�. Other eigenvalues eiθ , e−iθ, where � < θ < 2π− �.| |
Let �ϕgood ϕstart� = α. Then, ∃t, t = O( 1 

α
), so after t, iterations |


�ϕgood (U1U2)
t ϕstart�
| | | | ≤ δ 

where δ > 0 depends on �, not α. 
1BA has eigenvalue O(√1

r 
and for eiθ , θ = O(√

r 
). Therefore, (BA)

√
r has eigenvalue 

eiθ, where θ > � > 0. 

Now we need to iterate O(√1
α 

times, where α = �ϕgood ϕstart�.|

• ϕstart : Superposition of all |S� 

• ϕgood : Superposition of all marked |S� 

| rSince �ϕstart ϕgood� = portions of marked S�s and α = r2/N2 = 
N 

, total time is | |

N N 
O(r + 

√
r) = O(r + √

r 
) 

r 

which is minimized by taking r = O(N2/3). → Running time becomes O(N2/3). 


