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Lecture Topics (3/16, 3/21, 3/23, 3/4): quantum algorithms; entanglement; typical subspaces 

Recommended Reading: Nielsen and Chuang, Sections 5.4 and 12.1 ­ 12.4 

Problems: 

P1: (Quantum factoring as a feedback process) Shor’s quantum factoring algorithm was independently 

(re­)discovered by Alexi Kitaev, in Russia. Kitaev’s formulation allows for an interesting observation 

of how quantum factoring can be viewed as a feedback process, involving quantum control and optimal 
estimation, as we explore in this problem. 

Let N be a composite number we wish to factor, and choose some y coprime to N . Define the unitary 

transform U to be 

U m� = my mod N � , (1)| |

where the state lives in an N dimensional Hilbert space (for example, of n = �log2 N � qubits). 

(a) Show that the eigenstates of U are 

|λk� = √1 
r 

r−1

e 2πilφk yl mod N � , (2)|
l=0 

where φk = k/r, and r is the order of y, i.e. the smallest integer such that yr mod N = 1. Also 

show that 
U |λk� = e−2πiφk λk� . (3)|

It is a fact from number theory that once r is known, with probability greater than 50%, a factor 
of N can be found. Fatoring N is thus equivalent to finding r. The calculation here indicates 
that finding r is equivalent to finding an eigenvalue of U . We consider next a circuit by which 

this may be accomplished. 

(b) Consider this quantum circuit: 
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This is one step of a Kitaev factoring algorithm, in which the top wire carries an ancilla qubit, 
and the bottom (thick grey) wire carries the main n qubit state. Let the initial input state into 

the controlled­U gate be ψ0� = λk �. The R gate acting on the ancilla qubit is the Hadamard | |
transform � � 

R = 
1 √
2 

1 

1 

1 

−1 
. (4) 

Following the initial state through the circuit, and show that the ancilla is measured to be 0 with 

probability 

p0 = cos2(πφk ) , (5) 

and independent of the measurement result, the final state ψ1� = λk� for this example. Note| |
that therefore, it may be reused. 

The interesting observation is that after repeated trials, we are able to estimate p0 and thus 
determine the eigenvalue φk . If we may repeat the procedure with powers of U , i.e., U2j 

, then we 

may estimate φk efficiently (in a number of trials polynomial in log N). 

(c) Unfortunately, the above scheme would not be very useful if we already knew enough to be able 

to generate an eigenstate at the outset to feed into the system! What happens if we do not start 
with an eigenstate, and instead have the input state 

1 
r−1

ψ0� = 1� = λk � , (6)| | √
r 

|
k=0 

which is an equally weighted superposition of eigenstates?


Note that 1� is simple to generate. It is thus convenient to define the ancilla state
|

1 � |ηk� = 
2 

(1 + e−2πiφk ) 0� + (1 − e−2πiφk ) . (7)| |1� 

Compute the output state after one trial, and show that it is given by 

1 
r−1

ψ1� = (8)| √
r 

|ηk�|λk � . 
k=0 

(d) Compute the output state after t trials, ψt�, where the output of each trial is fed back as the |
input to the next iteration of the circuit. 

(e) Each measurement of an ancilla qubit ηk � gives either 0 or 1, and by symmetry the order of results |
doesn’t matter, so the only important quantity is the total number of zeros measured, n0 out of 
the t trials. Let us try to understand what a­posteriori state results for a given n0 by considering 

the joint probability distribution p(k, n0), where n1 = t− n0 is the number of one’s which resulted. 
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This distribution is what one would obtain if a projective measurement were carried out on the 

ψ� state in the λk � basis. Give an expression for p(k, n0).| |

(f) The interesting thing is that to a very good approximation, p(n0) ≈ 1/2, and so the conditional 
probability for getting some k, given n0, is �	 � � � � � 

p(k n0) ≈ 
2 t 

cos2n0 
πk 

sin2n1 
πk 

.	 (9)|
r n0 r r 

Verify this expression and plot the distribution; show that it has two peaks with widths which 

decrease as O(1/t). 

This shows that with each successive increase of t, the state ψt� increasingly converges into a |
superposition of two eigenstates of U , and moreover, knowledge of n0 increasingly determines k. 

(g) Helpful insight is gained by a numerical example.	 Try running this algorithm for N = 143, y = 5, 
and r = 20, and plot p(k|n0) for a sequence of values of t. 

The critical quantity is the convergence rate of our knowledge of the eigenvalue. 

(h) One of the inefficiencies of the scheme derived above is the fact that even after the system has 
converged into a perfect eigenstate, the measurement result from each iteration can still vary quite 

randomly. That is, once k has converged to a fixed value, we still obtain a zero with probability 

cos2(πφk ), which can be significant. Ideally, we would like arrange the output distribution so as 
to maximize the mutual information between each measurement and the unknown eigenvalue φk . 
We can take a step in that direction by modifying the above quantum circuit to become: 

U

0 R R

y
0

y
1

q

Note that an additional component is added in the control path, a θ box, which implements the 

transform � � 
1 0 

(10)
2πiθ 0 e

on the control bit, where θ is a classically determined angle, provided by a classical control 
apparatus. Operation of this circuit is very similar to the previous scenario: an initial state ψ0�|
is prepared and fed into the lower loop. This state will continually circulate, and eventually 

converges into an eigenstate of the system. 

The difference now is that depending on the accumulated sequence of measurement results, we 

can estimate the state of the system and change θ accordingly to bias future measurement outputs 
so that they have low entropy. 
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Analyze how this circuit works in detail, by following the state around one iteration of the loop, 
assuming it starts initially in with an eigenstate input, 0�|λk�. Show that if we choose θ = φk then |
p0 = 1. This is good, because then a measurement of 1, being an unlikely event (if our estimator 
is correct), would give us a relatively large amount of information about the error θ − φk .| |

(i) Coming up with a good estimator model is nontrivial, especially since the system changes non­
deterministically each time a measurement is performed. In particular, when feedback is per­
formed, Eq.(9) is no longer a good estimate of the state, since the Hamiltonian now becomes a 

function of the record of prior measurement results! 

Construct an algorithm for updating θ based on the measurement record obtained, using the idea 

that {f0, f1, . . .} is a model (series of functions of φ) of what we expect the system’s conditional 
probability distribution for φk to look like, approximating p(n0) ≈ 1/2 (this is not very good at 
late times). Append new multiplicative terms to this function after each iteration, depending on 

the measurement results obtained. 

Evaluate your algorithm, for example, using a trial run with parameters N = 143, y = 5, r = 20. 

(j) [optional] The procedure suggested in the last step is somewhat unstable in practice, because the 

estimator for θ is very bad at early times. An improved solution would be to estimate θ based 

on a running average of φ, or from the frequency of occurance of 0. Ideally, you would want 
something like a Kalman filter. Try to derive an optimal estimation procedure for this feedback 

based quantum factoring algorithm, and compare your result with Shor’s algorithm. What θ 
update rule would you need to be able to obtain the quantum Fourier transform circuit? 

P2: (Quantum search by continuous­time simulation) Grover’s quantum search algorithm can also 

be constructed as a continuous time quantum algorithm involving the simulation of a particular Hamil­
tonian. Consider the Hamiltonian 

H = |x��x| + |ψ��ψ| ,	 (11) 

where ψ� is the initial state of the system, and x� is the solution state (with an unknown x). Suppose |	 |
you are given an oracle which you can call, which implements Ux(Δt) = exp(−i|x��x|Δt) for a specified 

value of Δt (your choice). Moreover, you also have available Uψ (Δt) = exp(−i Δt) (you can |ψ��ψ|
perform this yourself, since ψ� is known). |

(a) Show that	 U(Δt) = Uψ (Δt)Ux(Δt) can be expressed as (up to an unimportant global phase 

factor) � � � � � �
Δt Δt2U(Δt) = cos − sin2 � ẑ Iψ ·
2 2 � �� � � � � � 

�	 z −2i sin 
Δt 

cos 
Δt ψ + ˆ

+ sin 
Δt ψ × ẑ

�σ , (12)
2 2 2 2 2 

· 

using the Bloch vector representation, |x��x| = (I+Z)/2 = (I+ ̂ � z ≡ (0, 0, 1) being the z ·σ)/2, with ˆ
σ)/2. We may choose �unit vector in the z direction, and |ψ��ψ| = (I+ � �	 ψ = (2αβ, 0, (α2 −β2)) by ψ ·

recognizing that H acts only in a two­dimensional space spanned by x� and y� =| | |ψ� − �x|ψ�|x� 
(un­normalized). 

(b) Show that by choosing Δt = π, the operations Uψ and Ux are identical to the operations used in 

the quantum simulation algorithm. 

4 



� 

� 

� 

(c) How can Δt be chosen such that we obtain a quantum search algorithm which uses O(
√
N) 

queries, and for which the final state is x� exactly, that is, the algorithm works with probability |
1, rather than with some smaller probability? 

P3: (Measures of pure state entanglement) Entanglement is a property of a composite quantum sys­
tem that cannot be changed by local operations and classical communications. How do we mathemat­
ically determine if a given state is entangled or not? And if a state is entangled, how entangled is 
it? 

(a) Recall that by virtue of the Schmidt decomposition (book, page 109), a pure state ψ� in the |
Hilbert space of systems A and B can be written as 

ψ� = λk (13)|kA�|kB � ,|
k 

where kA� and kB � are orthonormal states of systems A and B, respectively, and λ2 = 1.k k| |
The Schmidt number is the number of nonzero λk. Prove that ψ� is a product state, that is |
ψ� = ψA�|ψB �, if and only if the Schmidt number of ψ� is 1. | | |

(b) Prove that the Schmidt number cannot be changed by local unitary transforms and classical 
communication. The Schmidt number is one measure of how entangled a state is. 

(c) Give the Schmidt numbers for each of the following states: 

00� + 11� + 22�|√
3 

|
(14)|φ1� = 

|

00� + 01� + 10� + 11�| |
(15)|φ2� = 

| |
2 

00� + 01� + 11�|10� − |
(16)|φ3� = 

| |
2 

00� + 01� + 11�|√
3 

|
. (17)|φ4� = 

|

P4: (Typical sequences (computational)) Let X1, X2, X3, . . . be an i.i.d sequence of random variables 
X with range {a, b, c} and probability mass function p(a) = 0.8, p(b) = p(c) = 0.1. 

(a) Calculate the entropy rate H(X ) = H(X1). 

(b) The set of �­typical sequences of length n, A(n), consists of sequences for which the number na of 
occurrences of the value a is close to the expected value 0.8n. Find inequalities that tell when a 

sequence is �­typical in terms of �, n, and na. 

(c) Let A(100) be the set of 0.1­typical sequences of length 100. Compute Pr(A(100) ).0.1 0.1 

(d) Compute |A(100) |, the number of typical sequences, and the number of bits needed to represent 0.1 

all typical sequences. 
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