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MASSACHUSETTS INSTITUE OF TECHNOLOGY 

Department of Physics, EECS, and Department of Applied Math 

MIT 6.443J / 8.371J / 18.409 / MAS.865 

Quantum Information Science 

February 7, 2006 

Problem Set #1 
(due in class, 16­Feb­06) 

Lecture Topics (2/7, 2/9, 2/14): Quantum operations; quantum error correction critera; CSS codes 

Recommended Reading: Nielsen and Chuang, Sections 4.2­4.4, 8.1­8.3, 10.1­10.4 

Problems: 

P1: (Review) Quantum gates and circuits are briefly reviewed in this problem. 

(a) Compute the normalized eigenvectors of the Pauli matrices, X, Y , and Z, and plot these states 
as points on the Bloch sphere. 

(b) The cnot gate is a simple permutation whose action on an arbitrary two­qubit density matrix 

ρ = j,k∈{00···11} cjk is to rearrange the elements in the matrix. Write out this action |j��k|
explicitly on cjk . 

(c) Let ψ� = ( 00� + 11�)/
√

2. Draw a quantum circuit using controlled­phase and Hadamard gates | | |
to produce ψ� from the input 00�.|	 |

(d) Give a quantum circuit to create the state ( 000� + 111�)( 000� + 111�)( 000� + 111�)/2
√

2.| | | | | |

(e) Let	U be a cnot gate, and Xi and Zi be the Pauli operators on qubit i. What are UX1U
†, 

UX2U
†, UZ1U

†, and UZ2U
†? 

(f) The operator Ry (θ) = exp(−iY θ/2) rotates a qubit about the ŷ axis on the Bloch sphere, and 

similarly Rx(θ) = exp(−iXθ/2) rotates about x̂. Construct Rz (θ) for arbitrary θ, from a series 
of rotations about ˆ y.x and ˆ

P2: (Open Systems and the Operator Sum Representation) In class, we learned that the interac­
tion of any quantum system with an environment can be mathematically expressed by a quantum 

operation, E (ρ), defined as 
E(ρ) = EkρE

†
k , (1) 

k 

where the only condition on the operation elements Ek is that E†Ek = I. This is known as the k	 k 

operator sum representation (OSR). Here, we explore some of the physics implied by this model, and 

study some important examples introduced in the lecture. 

(a) If ρ has dimension d, then at most d2 operation elements are required: 1 ≤ k ≤ d2 . We can prove 

this fact by utilizing the unitary degree of freedom in the OSR. This is the fact that E and F are 
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the same quantum operation if and only if their operation elements are related by Ei = j uij Fj ,

and uij is a unitary matrix.


Let {Ej } be a set of operation elements for E . Define a matrix Wjk ≡ tr(E†Ek ). Show that the
j 

matrix W is Hermitian and of rank at most d2, and thus there is unitary matrix u such that uW u† 

is diagonal with at most d2 non­zero entries. Use u to define a new set of at most d2 non­zero 

operation elements {Fj } for E . 

(b) Phase damping is an important decoherence mechanism, described by the operation elements � � � � 

E0 = 
1 

0 

0 √
1 − λ 

E1 = 
0 

0 

0 √
λ 

, (2) 

or, equivalently, by the operation elements 

E0 = 
√
α 

1 0 ˜ 1 0˜ , (3)
0 1 

E1 = 
√

1 − α 
0 −1 

where α = (1 + 
√

1 − λ)/2. This fact was at the heart of Shor’s invention of quantum error 
correction! 

Explicitly show that EkρE
† = k Ekρ ˜˜ E† for a general single­qubit ρ, and give the unitary k k k 

Ek ; that is, find u such that ˜transformation which relates Ek to ˜ Ek = 
� 

j ukj Ej . 

(c) Construct operation elements for a single qubit quantum operation E that upon input of any state 

ρ replaces it with the completely randomized state I/2. It is amazing that quantum codes can 

correct for this kind of error (if it acts on only one qubit), even if the noise completely destroys 
the qubit! 

P3: (Two­bit amplitude damping code) Amplitude damping is an important process in real physical 
systems; it models spontaneous emission, inelastic scattering, thermalization of spins to the lattice, and 

many other microscopic processes where energy is exchanged between the system and environment. In 

this problem, we study a quantum code adapted for this error mechanism. 

Recall that the ampltiude damping channel for a single qubit is described by E(ρ) = Ek ρE
†
k , where k 

the operation elements are 

1 0 0 
√
γ 

E0 = √
1 − γ

E1 = . (4)
0 0 0 

Let γ = 1 − e−t/T1 , where t is time and T1 is the amplitude damping time constant. 

(a) Let ψ1� = ( 0� + 1�)/
√

2, and ρ1 = ψ1�) = Ek E† be the density matrix obtained k| | | E(| k |ψ1��ψ1|
for the qubit after amplitude damping. Compute the fidelity of ρ1 with respect to ψ1�, F1(t) = 

F ( ψ1�, ρ1) = �ψ1 ρ1 ψ1� and plot as a function of t.| | |

(b) Find the state φ(t)� which minimizes F1 at each point in time, and plot this minimum value as |
a function of time. 

(c) Let 0L� = 01� and 1L� = 10� be a quantum code encoding one logical qubit using two physical | | | |
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qubits. Define ψ� = a 0L� + b 1L�. Compute the output state | | |

ρ� = ψ�) = (Ej ⊗ Ek) (Ej ⊗ Ek)†	 (5)E(|	 |ψ��ψ|
j,k={0,1} 

which results when each physical qubit is subject to amplitude damping. 

(d) Compute the fidelity F ( ψ�, ρ�) = ρ� ψ� of ρ� with respect to ψ�, and plot as a function of t| �ψ| |	 |
for the worst case state. 

(e) Suppose we project the output state into the space orthogonal to 00� (say by performing a |
measurement of Z ⊗ Z to measure the total excitation number), and keep only the cases when 

we do not obtain 00�. What is the resulting state? What is its fidelity with respect to ψ�, as a |	 |
function of t? 

(f) (+5 points extra credit) How well does the Shor 9­qubit code correct against amplitude damping 

errors? Let the operation elements for this process be as above, applied to each physical qubit. 
Calculate the fidelity of the decoded state as a function of γ. 

P4: (CSS and the 7­qubit Steane code) Certain classical linear codes can be translated directly into 

quantum codes, and in this exercise we explore an example which illustrates the procedure, and also 

introduces the basic ideas of classical linear codes. 

(a) A linear code C encoding k bits of information into an n bit code space is a set of bit strings 
specified by an n by k generator matrix G whose entries are zeroes and ones. The 2k codewords 
which comprise C are given by Gx, where x is a column vector specifying k bit values (note that 
arithmetic operaetions are all done modulo 2). For the generator matrix ⎡ ⎤

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

0 1 1 1 

1 0 1 1 

1 1 0 1 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

(6)G = 

give the sixteen seven­bit codewords. 

(b) Errors are detected by computing various parity checks, which are forumlated in terms of an n− k 

by n matrix H satisfying Hx = 0 for all codewords x. For the above code, we may choose ⎤⎡ 
0 0 0 1 1 1 1 

H = ⎢⎣ 0 1 1 0 0 1 1 ⎥⎦ . (7) 
1	 0 1 0 1 0 1 

Verify that Hx = 0 for all the codewords you just found, and prove that HG = 0. 

(c) An error can be modeled as addition (modulo 2) of a random bit string	 e to a codeword x, 
giving y = x + e. As long as y is not a codeword, the error can be detected by computing 

Hy = e =� 0. Show that for this code, if only a single bit error occurs, then Hy = ej is just a 

binary representation for j, telling us which bit to flip to correct the error. 
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(d) The maximum number of bit flip errors that can be tolerated is given by the minimum Hamming 

distance between any two codewords, 

d(C) = min d(x, y)	 (8) 
x,y∈C,x=y 

where d(x, y) is the number of bits where x and y differ. What is d(C) for the above code? 

(e) Consider a code C⊥ which has generator matrix G� = HT and parity check matrix H � = GT . 
Show that C⊥ is a n = 7, k = 3 code, and furthermore, C⊥ ⊆ C. 

(f) Prove that if x ∈ C⊥ then y∈C (−1)x·y = C , while if x �∈ C⊥ then y∈C (−1)x·y = 0. | |

(g) Define the quantum state 
1 

ψ(x)� = � x + y�	 (9)|
|C⊥| 

y∈C⊥ 

|

for x ∈ C. Explicitly give ψ(0000000)� and ψ(1111111)�.|	 |

(h) Let e1 and e2 be vectors of n bits which indicate where errors occur; for nonzero bits of e1 bit 
flips occur, and for nonzero bits of e2 phase flip errors occur. Assume that the d(e1, 0) ≤ 1 and 

d(e2, 0) ≤ 1. Show that if ψ(x)� is the initial state, then after such errors the resulting state is |

1 e2|ψb+perr� = � (−1)(x+y)· x + y + e1� .	 (10) 
|C⊥| 

y∈C⊥ 

|

(i) Recall that	H is the parity check matrix for C. Explain how to compute the transformation 

x�|Hx� using a circuit composed entirely of controlled­nots. Show that you can thus |x�|0� → |
obtain e1 by applying this circuit to ψb+perr�. Since e1 has at most one error, we can thus obtain |

1 e2|ψperr� = � (−1)(x+y)· x + y� .	 (11) 
|C⊥| 

y∈C⊥ 

|

(j) Give the state obtained by applying Hadamard gates to each and every qubit of ψperr�, and show |
that by applying the appropriate parity check matrix (which one?), and using your result from 

part (f), you can obtain e2, and thus reconstruct the original state ψ(x)�. In this manner, it |
becomes apparent that C is used to correct for bit flip errors, and C⊥ for phase flip errors. Since 

those errors form a basis for an arbitrary error, the quantum code we have constructed can correct 
for an arbitrary single qubit error. 
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