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Speech Recognition 

This chapter is about the technologies used to allow computers to recognize the 

words in human speech. It describes the basic components of all speech recogni­

tion systems and illustrates these with an example of a simple recognizer typical 

of several inexpensive commercial products. After this discussion of basic recog­

nition, the chapter details a larger range of features that can be used to differen­

tiate various recognizers according to the styles of speech interactions they 

support. Several more advanced recognition techniques are then introduced fol­

lowed by brief descriptions of selected research projects in large vocabulary and 

speaker independent word recognition. 

BASIC RECOGNIZER COMPONENTS 

There are three basic components of any speech recognizer. 

1. 	A speech representation that is computationally efficient for pat­

tern matching. The representation is the form into which the recog­

nizer converts the speech signal before it begins analysis to identify 

words. Typical representations include the output of a bank of filters 

(similar to a spectrogram), Linear Predictive Coding (LPC) coeffi­

cients,' and zero crossings of the speech waveform. Recognizers of 

'See Chapter 3. 
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increased sophistication incorporate more abstract representations 
of speech such as phonemes or distinctive spectral features. Hidden 
Markov Models, described later in this chapter, are a statistical rep­
resentation based on the various ways words or phonemes may be 
pronounced. 

2. 	A set of templates or models, which are descriptions of each word to 
be recognized, in the representation of speech used by the recognizer. 
The templates describe the words in the recognizer's vocabulary, i.e., 
those words that the recognizer can identify. They are reference mod­
els against which an input can be compared to determine what was 
spoken.


3. 	A patternmatching algorithm to determine which template is most 
similar to a specimen of speech input. This element of the speech rec­
ognizer must determine word boundaries, locate the most similar 
template, and decide whether the difference between the input and 
the selected template is minor enough to accept the word. In very 
large vocabulary recognizers, the pattern matching technique usu­
ally includes access to more advanced knowledge of language such as 
syntax and semantics, which constrain how words can be combined 
into sentences. 

To identify a word the recognizer must capture incoming speech and convert it 
to the chosen internal representation (see Figure 7.1). The pattern matcher then 
selects the template that most closely matches the input or rejects the utterance 
if no template is a close enough match. 

SIMPLE RECOGNIZER 

This section describes a simple recognizer typical of many inexpensive, commer­
cially available devices. This recognizer is designed to identify a small number of 

I ~~ La 
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Figure 7.1. The functional elements of a speech recognizer. The user's 
speech is digitized and converted to the recognizer's internal representa­
tion. The captured speech is then compared with the words stored in the 
recognizer's template memory. The pattern matching algorithm then 
determines which template, if any, is the closest match. 
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words spoken in isolation by a specific individual. The purpose of the description 

that follows is not to provide details of a particular product but rather to offer a 

sample implementation of the basic components described previously. 

Rqrnestaflon 

A simple recognizer digitizes incoming audio by means of a codec2 and then uses 

a digital signal processing algorithm to extract frames of Linear Predictive 

Coding (LPC) coefficients every 20 milliseconds. The LPC coefficients are a con­

cise representation of the articulatory characteristics of speech as they capture 

both the resonances of the vocal tract as well as its voicing characteristics. The 

20 millisecond sampling interval results in 50 LPC frames per second, provid­

ing significant data reduction to simplify later pattern-matching. 

Templat 
Templates are gathered by prompting the user from a word list and then saving a 

set of LPC frames for each word generated as just described. To build a template, 

the recognizer must determine when the user begins and finishes speaking to 

know which LPC frames to include in the template. Since each LPC frame or set 

of coefficients in one 20 millisecond sampling period includes an energy value, 

this task can be accomplished easily. As shown in Figure 7.2, once the audio 

exceeds the threshold ofbackground noise, LPC frames are saved until the audio 

drops below the threshold. It is necessary to wait until the signal has dropped 

below the threshold for a short period of time as silence or low energy can occur 

within a word, such as at stop consonants. 
In the case of this simple recognizer, templates are trained by a user saying 

each word once. More sophisticated recognizers may take multiple specimens of a 

'See Chapter 3. 
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Figure 7.2. Energy thresholds can be used to find word boundaries if the 

words are spoken in isolation. 
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word to build a more robust template. Once templates are trained successfully,
the user can save them as a disk file on the host computer and reload them before 
each session, to avoid template training each time the recognizer is used. 

This recognizer also allows retraining of a single template, in which case the 
new LPC frames replace the old. Retraining is useful if the vocabulary changes,
if the original training was poor, or if the user decides that a different pronuncia­
tion of the word is more comfortable. Retraining may also be necessary when the 
user has a cold, due to an obstructed nasal cavity. 

Pftrn Med 

Word recognition requires the detection and classification ofspeech input. Just as 
with template creation, a word is captured by detecting that the audio input 
exceeds the background noise threshold and then converting the input to LPC 
frames until the input again drops to the background level. The input word is 
then compared with each template; each frame or set of LPC parameters of the 
input is compared to the corresponding frame of the template. The frame-by­
frame error is the sum of the differences between each of the dozen or so LPC 
parameters; the error for the word is the sum of the errors for each frame. The 
template with the smallest word error most closely matches the audio input. If 
the error exceeds a rejection threshold, a failed recognition attempt is reported. 
Otherwise the recognizer reports the word corresponding to the closest template. 

Both the templates and the captured audio input are multidimensional vectors, 
with one degree-of-freedom per LPC parameter and one for time. But to illustrate 
pattern matching let us assume that the templates consist of only a pair of values 
that display on two axes. One parameter is assigned to the X-axis and the other 
parameter maps to the Y-axis so that each template occupies a point whose coor­
dinates are the two parameters (see Figure 7.3). Speech input is converted into 
this representation, i.e., a pair of parameters specifying a point in the same 
parameter space as the templates. The closest template is the nearest neighbor 
template to the point representing the input. The four templates divide the space 
into four regions; any pair of parameters in each region most closely matches the 
template in that region. 

Even the simplest of speech recognizers can improve its accuracy by employing 
a better pattern matching algorithm. Two additional refinements, illustrated in 
Figure 7.4, contribute to this recognition improvement. The first refinement is 
that the input cannot exceed a threshold distance (r in the figure) from the near­
est template. When the audio input is further from the nearest template than this 
distance, a rejection error is reported. This is necessary to avoid inadvertently 
accepting noise, breath sounds, or a mistaken utterance as one of the acceptable 
words in the recognizer's vocabulary. 

The second refinement is a requirement that the input word maps significantly 
closer to the best match template than any other. If a point is very nearly the 
same distance from two or more templates, the recognizer is confident that one of 
these was spoken but uncertain which particular word was spoken. This is 
depicted in Figure 7.4 as the shaded regions around the lines partitioning the 
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Figure 7.3. To illustrate pattern matching decisions, assume that each 

template represents two degrees of freedom defining a Cartesian coordi­

nate space Four templates occupy four points in this space. 

Figure 7.4. A more refined classifier has upper bounds r on the distance 

between an input specimen and a chosen template. It will also reject val­

ues which are closer to one template but also close to another, i.e., within 

distance d. 
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space between neighbors; the distance d defines the minimal difference required 
to differentiate candidate choices. Points within the shaded region are nearly the 
same distance from each of the two closest templates and will also cause a rejec­
tion error. 

This section described an extremely simple recognizer that identifies only iso­
lated words. The speech recognizer's simplicity is due in part to its unsophisti­
cated processing of acoustical information: It does not extract significant features 
but merely considers LPC frames in isolation. Because each template may con­
tain many frames, the pattern matcher has to make a large number of frame-by­
frame difference calculations, making it computationally difficult to recognize a 
large number of words. More sophisticated recognizers detect and classify key 
acoustic features of an utterance and use this for the internal representation. 

Additionally, the pattern matcher just described makes no provision for tem­
plates of different lengths and, more importantly, assumes that the input utter­
ance will be of the same length as the correct template. If acoustic boundary 
detection operates slightly differently from word to word or if the words are spo­
ken at different speeds, this pattern matcher will likely fail. A technique known 
as dynamic time warping or dynamic programming (discussed later in this 
chapter) is often used to compensate for time differences. 

CLASSES OF RECOGNIZERS 

Recognizers vary widely in their functionality. In addition to performance, other 
distinctions between recognition techniques are important in selecting a recog­
nizer for a particular application. These distinctions are summarized in Figure 
7.5, which displays a three-dimensional space representing the range of possible 
recognizer configurations. Some of these recognizers are commercially available 
and have been in use for some time, whereas others are the subject of ongoing 
research and are just beginning to emerge from research laboratories. 

Who Ca Use the Recognize 

A speaker-independent recognizer is designed to recognize anyone, while a 
speaker-dependent recognizer can be expected to understand only a single par­
ticular speaker. A speaker-adaptive recognizer functions to an extent as a com­
bination of the two; it accommodates a new user without requiring that the user 
train every word in the vocabulary. 

Speaker-independent recognition is more difficult than speaker-dependent 
recognition because we all speak the same words slightly differently. Although we 
usually understand each other, this variability in pronunciation and voice quality 
among talkers plays havoc with the pattern matching algorithms of simple rec­
ognizers. Speaker-independent recognition requires more elaborate template 
generation and a clustering technique to identify various ways a particular word 
may be pronounced. 
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Figure 7.5. A three-dimensional space defined by the different function­

alities provided by a recognizer. 

of classifying the acceptable variations in word pronunciations is This process 
the equivalent of the training method just described for the simple illustrative 

recognizer. Since speaker-independent recognition is such a difficult task, most 

speaker-independent recognizers are limited to small vocabularies (10 to 20 

words) and recognize only single words spoken in isolation. Several commercially 

available speaker-independent recognizers accept the digits "0"through "9" plus 

"yes" and "no." Speaker-independent recognition for a larger vocabulary or with 

words spoken together must rely on additional constraints such as a heavily 

to achieve adequate recognition performance. restricted grammar 
An individual pronounces a single word in a much more consistent fashion than 

that of a number of different people; this is why speaker-dependent recognition is 

less difficult. Most speaker-dependent recognizers use a training method similar 

to the one described for the simple recognizer in the previous section. Multiple 

templates may be trained and merged together to give an average pronunciation 

for each word in the vocabulary. 
A speaker-adaptive recognizer learns to adapt to a particular speaker either by 

calibrating itself to a known sample of that person's speech or by incorporating 

user feedback when it recognizes a word correctly or incorrectly. Such a recog­

nizer has a basic acoustic model for each word that it refines to fit a particular 

speaker. One common technique is to have the user read a passage of training 

data; the recognizer can then determine how this particular person speaks. 

If a large vocabulary size is needed, a recognizer must be either speaker-adaptive 

or independent because training many templates is tedious and time consuming. 

Some adaptive recognizers require many hours of computer time to derive the 

user model from the training data, but once the data has been acquired the user is 

freed from the task. The resulting user model can be saved in a host computer and 

downloaded later, similar to the set of word templates for the speaker-dependent 

recogmzer. 
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Speaking Style, Comesd or Isolated Words? 

A discrete speech recognizer requires pauses between each word to identify 
word boundaries. A connected speech recognizer is designed to recognize a 
short series of words spoken together as a phrase. A continuous speech recog­
nizer is capable of identifying words in a long string of ordinary speech without 
the talker pausing between groups ofwords. A keyword spotting recognizer can 
locate a few words in the midst of any amount of speech. 

"Connected speech" for recognition purposes is not natural speech. Users of a 
connected speech recognizer can speak a few words or perhaps a whole sentence 
at a time but then must pause to let the recognizer catch up. Users must also 
speak distinctly. Pausing after each sentence provides reliable boundary points 
for the first and last word, which facilitates recognition of the entire phrase. But 
we do not pause between sentences in fluent speech. Human listeners can keep 
up, and this is the goal of continuous speech recognition, which may become a 
reality as computer speeds increase. 

Keyword spotting searches for a small number of words in a stream of continu­
ous speech. For example, a keyword recognizer might be designed to recognize 
the digits from an utterance such as "The number is three five seven... 
urn... four one, please." Successful keyword spotting is comparatively new 
[Wilpon et al. 19901 and more difficult than simply separating speech from non-
speech background noise. 

Most currently-available commercial products recognize isolated or connected 
speech. Connected speech is much faster to use because it eliminates the need for 
unnatural pauses and requires less attention to speaking style on the part of the 
user. But because connected recognition is more difficult, it may manifest higher 
error rates, which could outweigh the speed advantage. It can also be argued that 
speaking discretely is more effective because it requires the user to keep in mind 
the need to speak clearly from a limited vocabulary while using speech recogni­
tion [Biermann et al. 19851. 

Connected word recognition is much more difficult than isolated word recogni­
tion for several reasons. 

* 	 Coarticulation changes the pronunciation of a word as a function of 
its neighbors. Initial and final syllables are particularly subject to 
modification. Words spoken in isolation do not suffer from coarticula­
tion effects between words. 

* 	 It is difficult to find word boundaries reliably from within fluent 
speech. There is no pause between words, nor is there a significant 
decrease in speech energy at word boundaries; low energy syllables 
containing stop consonants are often more discernible than word 
boundaries. 

* 	 The probability of error increases with the number of words in an 
utterance. If the first word is incorrectly matched against a template 
which is either too long or too short, then the data to be analyzed for 
the second word will be incorrect, making the error propagate to sub­
sequent words. 
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areBecause of these factors many current applications of speech recognition 

based on isolated word recognizers. 

VoalhIlry Sie 

Another criterion by which to differentiate recognizers is vocabulary size, which 

can be grossly categorized as small, medium, or large. Small vocabulary recog­

nizers with less than 200 words have been available for some time. Medium size 

recognizers (200 to 5000 words) are being developed, usually based on the same 

algorithms used for smaller vocabulary systems but running on faster hardware. 

Large vocabulary recognizers aim for the 5000 to 10,000 word level. Much ordi­

nary office language could be handled with a vocabulary of this breadth, which 

marks the range being aimed for in "listening typewriters" designed to accommo­

date dictation ofbusiness correspondence. 
Several issues conspire to complicate the recognition of large vocabularies. One 

factor is the computational power required for the pattern matching algorithm. 

The input must be compared with each template, so classification time is a func­

tion of the number of templates, i.e., vocabulary size. The requirement of an 

acceptable response time therefore puts an upper limit on vocabulary size. As 

microprocessor speeds increase, this computational limit will become less of an 

issue. Some search-pruning techniques can also be employed to quickly remove 

candidate templates from the search if they are obviously poor choices, such as if 

they are much too long or short. If the recognizer employs a grammar, it can use 

this knowledge ofhow words can be combined to eliminate syntactically incorrect 

candidates at each point in the search. 
A more serious limitation to vocabulary size is simply that as the number of 

words increases, it is more likely that the recognizer will find some of them simi­

lar. To return to the two parameter template model discussed earlier, compare 

Figure 7.3 with Figure 7.6. As the number of templates increases, the average 

distance between them decreases, allowing for a smaller margin of difference in 

pronunciation between the input sample and its associated template. 

Decreased distance between templates is confounded by the fact that as tem­

plates or words are added to the recognizer's vocabulary, they are not uniformly 

distributed throughout the recognizer's representation space. In fact, some words 

in the vocabulary are likely to sound so similar that to distinguish among them 

on acoustic evidence alone is extremely difficult. For example, if a vocabulary con­

sisted of the words, "sun,""moon," and "stars,"we might expect that distinguish­

ing which word was spoken to be easy. But if we add "Venus," "Earth," and "Mars" 

to the vocabulary, we might anticipate confusion between "stars"and "Mars."3 

SThis is a simplistic example. The strong fricative and stop at the beginning of "stars" 

should be easily differentiated from the nasal of "Mars" if suitable acoustic features are 

used for the recognizer's representation. It is hard to predict which words will sound sim­

ilar without intimate knowledge of the recognizer's internal speech representation. 
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Figure 7.6. As the number of words increases, the mean distance 
between templates decreases. 

ADVANCED RECOGNITION TECHNIQUES 

This section explores several techniques to enhance speech recognition. The sim­
plest recognizers, supporting a very small speaker-dependent vocabulary of iso­
lated words, occupy the region near the origin of the three-dimensional model 
depicted earlier in Figure 7.5. In moving away from the origin in any direction, 
recognition errors are more likely as the process becomes more complicated. But 
a large vocabulary, continuous speech, and speaker independence are precisely 
those attributes that make recognition more widely useful. 

Unless users can be convinced to change their habits to speak more clearly and 
consistently, recognizers must be improved. More advanced recognizers generally 
employ one of two techniques to make pattern matching more powerful for deal­
ing with variations in speech patterns. These techniques, Dynamic Time Warp­
ing and Hidden Markov Models, are the topics of the next two sections. The 
descriptions that follow provide an overview of the two techniques; the curious 
reader is encouraged to consult the references for a more rigorous description of 
the algorithms. A third approach to managing speech pattern variation uses neu­
ral networks for speech recognition; this approach is far less developed than the 
previous two and still speculative. 

Data reduction can facilitate pattern matching by minimizing its computa­
tional requirements. Vector Quantization is a technique employed by many 
recognizers to capture important variations in speech parameters without over­
loading the classifier-so it will be described in this section as well. Finally, the 
last part of this section considers how nonspeech evidence could be used to 
improve large vocabulary speech recognition. 
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Dpnamk lme W•rping 

Dynamic Time Warping is a technique that compensates for variability in the 

rate at which words are spoken. Dynamic Time Warping (DTW) was developed 

primarily as a mechanism to compensate for variable word duration in connected 

speech recognition [Sakoe and Chiba 19781. This method can also help determine 

word boundaries when an unknown number of words are spoken together. DTW 

is based on a more general computational technique known as dynamic pro­
gramming. 

The duration of spoken words is quite variable, especially if we compare con­

nected speech with the isolated words that may have been used for training a rec­

ognizer. Coarticulation may shorten words by combining their boundary syllables 

with the preceding or subsequent words. Words spoken in isolation (citation form) 

are longer and often more clearly enunciated. The stress pattern of the sentence 

lengthens some syllables, as stressed syllables are longer than unstressed sylla­

bles. Such changes in length are not linear; every phoneme is not lengthened by 

the same scale factor. DTW compensates for such nonlinear phenomena. 

Consider the simple recognizer discussed earlier in this chapter. It computes an 

error between the input speech and a template by computing the frame-by-frame 

difference between the two. But if the talker speaks at a different rate, successive 

frames of input may not align with the same phoneme in the template, giving a 

deceptively large error. For example, if the word "fast" is trained but the talker 

lengthens the vowel ("faaast") during recognition, some frames of the lengthened 

vowel would be scored against the frames corresponding to the unvoiced "s" in the 

template. DTW detects that successive "a" frames of the input match the fewer 

"a" frames of the template better than the "s"frames that follow, and it computes 

an error based on the selected matchup. 
DTW operates by selecting which frames of the reference template best match 

each frame of the input such that the resulting error between them is minimized. 

By allowing multiple frames of one to be matched against a single repeated frame 

of the other, DTW can compress or expand relative time. Because this decision is 

made on a frame-by-frame basis, the time-scaling is local; DTW may compress 

one portion of the input and expand another if necessary. 
DTW provides a mapping between the sample and a reference template such 

that the error when the two are compared is minimized. This mapping defines a 

path between sample and reference frames; for each frame of the sample it spec­

ifies the template frame best matched to the next sample frame. In Figure 7.7, 

the nth sample frame is compared to the mth reference frame. If the sample is 

spoken more quickly, then multiple reference frames correspond to a single tem­

plate frame; this case is indicated by the vertical path, which allows the nth sam­

ple frame to also match the m + 1st reference frame. If the reference and sample 

are proceeding at the same rate, the m + 1st reference frame will match the 

n + 1st sample frame forming a path at a 45-degree angle (slope = 1). Finally,if the 

sample is spoken more slowly than the reference, multiple sample frames must 

be compared to a single reference frame as indicated by the horizontal line. 

Figure 7.8 shows how these frame-by-frame decisions combine to produce a 

path for comparing the sample to the reference. The DTW algorithm computes 



143 Sp" Kognpion 

U4 

Figure 7.7. Dynamic Time Warping defines a path between frames of a 

sample utterance and a template such that the frame-by-frame error 

between the two is minimized. If sample point mmatches reference point 

m, then reference point m + 1 may match either sample point n or n + 1. 

Figure 7.8. Dynamic Time Warping provides nonlinear time-scaling 
between a sample (horizontal-axis) and reference (vertical-axis) utter­

ances. In region a the sample is spoken more slowly; in region b they are 

spoken at the same rate; and in region c the template is spoken more 

slowly. 
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the minimal error path between the input and template frames; relative speaking 

rate can be inferred from the slope of this path. A slope of 1 (45-degree line) is 

optimal when both are spoken at the identical rate. 
It is necessary to place limits on the degree of time-scaling allowed by DTW. It 

would be senseless to compare 50 milliseconds of the sample to 1200 milliseconds 

ofreference; normal speech does not exhibit such wide variability. Constraints on 

the maximum time-warping ratio are imposed by placing upper and lower bounds 

on the slope of the DTW path. The typical range of slopes is one-half to two, which 

accommodates a sample being spoken either halfor twice as fast as the reference. 

"Two-level" dynamic programming can be used to find word boundaries in a 

connected utterance containing an unknown number of words. At the lower level, 

DTW allows time-scaling of each word by computing the minimal error path 

matching the input to each template. At the higher level, these word-by-word 

error values are used to compute the best path through the set of all possible word 

combinations that could comprise a sentence. The two levels operate in concert to 

apportion the duration of the utterance among the set of selected templates. Fig­

ure 7.9 shows how a number of words of different lengths could consist of similar 

phones, or speech sounds.4 It may be that the first three phones most closely 

match the short word "her," which would suggest that the utterance contained 

three words. But a better overallscore might be obtained by matching these three 

phones against the beginning of "heartfelt" and selecting the utterance with only 

two words. 
Dynamic programming is most beneficial for connected speech recognition. 

Word durations show greater temporal variation in connected speech than in iso­

lated speech. Additionally, word boundaries must be found by considering how 

the continuous stream ofphones can best be segmented into words in the absence 

of interword pauses. Dynamic programming is used in a number of commercial 

connected speech recognition systems, but its popularity for research purposes 

has faded in favor of Hidden Markov Models. 

HIdU Markov Mo 

A Hidden Markov Model (HMM) is a two-stage probabilistic process that can 

be used as a powerful representation for speech. A Hidden Markov Model is a 

well-behaved mathematical construct, and a number of detailed algorithms exist 

for solving problems associated with HMMs; introductions to these can be found 

in [Rabiner and Juang 1986a]. This section first explains HMMs in the abstract 

and then demonstrates how they can be applied to speech recognition. 

An HMM consists of a number of internal states; the model passes from an ini­

tial state to the final state as a step-by-step process generating an observable out­

put at each step (state transition). For example, the states may correspond to 

phonemes contained in a word with the observable output corresponding to the 

'Such a representation is called a word lattice. 
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h u r t f u t anks


Ihear t f e I ttha n k s 

her fel hankies


eartfull banks


Figure 7.9. Different sequences of words could match an utterance; each 
sequence implies different word boundaries in the input utterance. 

presence or absence of a number of acoustic features. At each step, the model can 
either move to a new state or stay in the current one. The model is "hidden" in 
that we cannot observe the state directly but only its output. From the series of 
observable outputs, we can attempt to guess when the model was in each state. 
Alternatively, we can say whether some series of outputs was likely to have been 
generated by a particular HMM. 

For example, consider the arrangement shown in Figure 7.10, in which a box 
and a bowl are each full of black balls and white balls. The box has many more 
black balls than white while white balls dominate the bowl. Starting with the 
box, we remove one ball from it at random and pass it to an observer in another 
room who cannot see what is being done. Then a normal six-sided die is tossed. If 
the result is less than four, then the source of the next ball is the bowl. If the die 
is greater than three, then the next ball will be selected from the box. The cycle is 
then repeated.' Whenever we select from the box, a die throw of less than four 
shifts attention to the bowl. Once we start selecting from the bowl, we continue 
selecting from it unless the die shows a one, at which point we are finished. This 
model is likely to spend a majority of its cycles selecting from the bowl since a 
state transition from the box has a probability %ofshifting to the bowl, but a bowl 
transition has a probability of only %of terminating and % of continuing with the 
bowl.6 We should expect this arrangement to initially present more black balls 
than white to the observer (while it is in the box state) and then to produce more 
white balls. We should also expect more white balls overall. But keep in mind that 
this is a probabilistic process: Not all black balls come from the box and not all 
selections come from the bowl. 

The box-and-bowl setup is a Hidden Markov Model; it is characterized by a 
number of states and associated probabilities for each transitionfrom any state. 
The box and bowl are each a state; the rules about throwing the die define the 

'This pedagogic example was inspired by Rabiner and Juang [Rabiner and Juang 
1986b].


6Probability is expressed as a number between zero and one. If an event occurs with 
probability K, we would expect it to happen once in two trials. A probability of V implies 
that we can expect the event once out of six trials. A smaller probability indicates that an 
event is less likely to occur. 
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Figure 7.10. A box and a bowl full of colored balls illustrate a Hidden Markov Model. 

transition properties. Figure 7.11 shows a more general HMM; in each state S(n) 
there is some probability P(n,n) of remaining in that state and some probability 

P(n, n + 1) of transitioning to the next state. In some models, it may be possible 

to bypass a state or a series of states as indicated by the dashed are labeled P13 in 
the figure. The sum of the probabilities of all the arcs leaving a state is one; the 
model accounts for every possible path through its states. 

How does this apply to speech recognition? An HMM can be used to represent 
a word with internal states representing characteristic acoustic segments, possi­
bly phonemes or allophones. The output of a state is a frame or vector of acoustic 

parameters or features; this output is probabilistic to allow for variability in pro­
nunciation and hence differences in the acoustic representation. The duration of 

an acoustic segment is a function of the number of steps in which the model is in 

the state corresponding to the segment. Staying in the same state, i.e. lengthen­

ing a phone, depends on the probability associated with the transition from that 

state to itself (Pu in Figure 7.11). Arcs such as P1s may be included to indicate 

that an intermediate state S2 is optional during pronunciation, such as the sec­

ond syllable in "chocolate." 
In terms of the basic recognizer components, the "templates" consist of a set of 

HMMs with one HMM associated with every word. The acoustic representation of 

an input specimen of speech is not a collection of states but rather a set of acous-

Start 0 0 Stop 

· ................
·· ·-.................. 


PI 3 

Figure 7.11. A Markov Model. 
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tic parameters corresponding to the possible observed sequences from the tem­
plate HMMs. For the HMM-based recognizer, classification consists of determin­
ing which HMM has the highest probability of producing the observed acoustic 

sequence. The Viterbi algorithm is a commonly used method of solving this clas­

sification problem; a more detailed description is beyond the scope of this book 

but see [Lee and Alleva 19921 for an overview of its theory. 
There are two related HMM problems which can also be solved mathematically. 

One is training the statistically defined HMMs that the recognizer requires as 

templates. Given some number of observation sequences (i.e., repetitions of the 

word), an HMM must be derived to represent that particular word. The second 

problem, not directly relevant during recognition, is to determine for some HMM 

and a set of observed outputs the internal states of the model that were most 

likely at each step. 
Hidden Markov Models are a powerful representation of speech and conse­

quently are used in many speech recognition systems currently under develop­

ment. Although this section has described isolated word recognition, HMMs can 

also be used with connected speech to represent not only the phones of each word 

but also the probabilities oftransitioning from one word to another. For connected 

speech recognition, the observed sequence would be generated by passing 

through a sequence of states in a sequence of HMMs with one HMM for each word 

spoken. The combination of words is also described statistically as another layer 

of HMMs in which each state corresponds to an entire word thereby encoding 

syntactic and semantic information. 

Veanr uantifzalo 

Vector Quantization (VQ) is a technique employed for data reduction in speech 

coding and speech recognition. VQ is used to reduce a widely ranging input value 

into a smaller set of numbers representing typical values of the input. Because 

the input is classified as one of a small number of values instead of the value 

itself, less storage space is required. More importantly, the input is usually mul­
tidimensional (e.g., a set of LPC coefficients), and it is reduced to the single 

dimension identifying the nearest vector-quantized value. 
In order to perform Vector Quantization, it is first necessary to decide how to 

efficiently cluster all possible input values. The analysis of sample data, which 

must be typical of the data to be encoded, determines how to cluster similar 

input values. The cluster's "center of gravity," or average value, then represents 

the entire set of data in the group. Each cluster is represented as one entry in a 

codebook, which lists the average value of each group. Having created a robust 

VQ codebook from specimen data, new data can be classified by selecting the 

codebook entry nearest in value to that data. The original value of the input data 

is lost; it is now represented by the single value associated with the codebook 

entry. 
Building the codebook divides the space of possible values into regions and typ­

ical values. This is much like the process of selecting word templates for recogni­

tion as shown in Figure 7.6. The number of entries required for the codebook 
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depends on how well the data clusters into groups and the accuracy with which 
the data must be represented. If the data points are widely scattered, it is diffi­
cult to cluster them efficiently. The range of values subsumed by each cluster 
determines the accuracy with which vector quantized data can be represented 
since the codebook entry is used to look up a value for the data and only one value 
is stored per cluster. 

Representing an input as a codebook entry having a similar value significantly 
reduces both storage and computation during pattern matching. To vector quan­
tize an input value based on a codebook ofN entries, the input must be compared 
with at most N possible values. The error between each of the codebook values 
can be computed in advance and stored in a two-dimensional array. During pat­
tern matching the error between an input value and a corresponding template 
value can be found by table lookup instead of direct computation. The sum of the 
errors for each frame is the error between the input and that template. 

As a simple example, vector quantization can be used to represent the number 
of hours per day that light bulbs are left burning in a home. If daily use is repre­
sented as an integral number of hours from zero to twenty-four, five bits of stor­
age are required for each bulb. Higher resolution, such as minutes in addition to 
hours, requires even more bits of storage per bulb. However, by observing the 
individual bulbs we discover some interesting patterns of usage. Many bulbs are 
rarely turned on. Some bulbs are always left on all night like an outdoor lamp or 
a child's night light. Other bulbs, in the living room and kitchen, may typically be 
on from dusk until the occupants go to sleep. Still other bulbs such as in a closet 
may be turned on occasionally for brief periods of a few minutes each day. 

This situation can be described by a vector quantization scheme employing a 
codebook with four entries to cover the four typical cases described in the previ­
ous paragraph. 7 Each entry in the codebook (see Figure 7.12) corresponds to one 
case of light bulb use, and the value stored for that entry indicates how long such 
a bulb is likely to be used. Using this codebook, light bulb use is encoded in two 
bits at a savings of three bits per bulb. 

Vector quantization is usually employed to represent multidimensional quanti­
ties so the compression to a single-dimensioned codebook offers further data com­
pression. To continue with the light bulb example, we might observe that many of 
the lamps used rarely or left on all night are low wattage, e.g., 60 or 75 watts. The 
living room and kitchen lights are more likely to be 100 or 150 watts to illuminate 
work areas. So we might vector quantize this information as well as shown in Fig­
ure 7.13. This new codebook indicates that a bulb assigned value two is typically 
120 watts and on for five hours a day. Note that a 150 watt bulb used seven hours 
a day and a 75 watt bulb used four hours a day will both be represented by code-
book value 2 as well. It may be that there is actually no single bulb of 120 watts; 
this is an average that represents the least error when compared to all the bulbs 
in the sample set with this codebook value. 

'Such a codebook is said to be "of size four." 



149 Speech RcoAnilin 

codebook entry codebook value 

0 0 hours 
1 15 minutes 
2 5 hours 
3 10 hours 

Figure 7.12. A simple VQ codebook representing light bulb use. 

Once quantized, detailed information about a particular light bulb is lost, but 
we still have a general idea of how much each is used. This would be useful for 
identifying which bulbs should be replaced by more expensive energy-efficient 
models. While the memory savings are small in this example, vector quantization 
can be used for much greater data reduction in speech coding applications where 
it represents complex acoustical information about an utterance. 

How is vector quantization used in speech representation? Consider the output 
of an LPC coder; it includes precise indications of the locations of each of the for­
mants, or resonances, in the vocal tract as conveyed by filter parameters. But for 
gross categorization of the position ofthe vocal tract, e.g., to differentiate the vow­
els by their F1/F2 ratio, such precision is not necessary. Furthermore, not all com­
binations of F1 and F2 are possible since they are constrained by the physical 
characteristics of the vocal tract. Vector quantizing these filter coefficients can 
capture the overall vocal tract configuration in a very concise form when great 
precision of each parameter is not necessary. 

mployig Constrants 

A recognizer's task becomes increasingly difficult as the number of words to be 
recognized increases. To improve recognition large vocabulary systems apply 
constraints to the set of all possible words that can make up an input utterance. 

codebook entry codebook value 

time wattage 

S00 hours 65 
1 15 minutes 75 
2 5 hours 120 
3 10 hours 70 

Figure 7.13. Vector quantization is usually used to represent multidi­

mensional quantities. Here it encodes both the average duration of illumi­

nation as well as the wattage of bulbs. 
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Constraints limit the search space during word classification by ruling out 
improper combinations of words. Although we readily employ general syntactic 
and semantic constraints to rule out many ill-formed or nonsense sentences while 
trying to understand a talker, it is difficult to express the knowledge that under­
lies such decisions in computationally tractable terms. Current recognition sys­
tems incorporate limited constraints specific to a given task. 

Some of these constraints are specific to the the input; for example, North 
American telephone numbers have seven digits (ten if the area code is included). 
Other sets of constraints can be derived from a specification of all the legal 
utterances for a set of words and a task. For example, simple rules of syntax tell 
us that every sentence must have a verb, and common sense dictates that an 
application for ordering pizza should expect to encounter the word "large" adja­
cent to "pepperoni." To define these constraints the application designer must 
specify every legal sentence to be recognized. This is facilitated by lumping 
groups of words into classes which have meaning in a particular task context, 
such as "digit," "size," or "topping." Sentences can then be described as series of 
words combined from particular classes instead of listing every possible word 
sequence. 

Because they are derived by observing people perform a task and computing 
the likelihood of particular sequences of words, constraints can also be proba­
bilistic. This requires a large body of data from which to derive the probabilities 
as there may be many possible sentences and statistical representations that 
require a large quantity of training data. Some language models have been based 
on analysis of a large corpus of text documents. Although spoken and written lan­
guage differ, the advantage of this approach is that the text is both readily avail­
able and easily analyzed by a computer. 

The effectiveness of constraints is related to the degree to which they limit the 
possible input utterances; this can be stated as the predictive ability of a string 
of n words on the n + 1st word. Alternatively, the constraints may be quantized 
as the branching factor associated with any node in a string of input words; 
this number indicates how many different words can follow one or more previous 
words. A question requiring a yes-or-no answer has a branching factor of two, 
for example, while one requiring a single digit has a branching factor of ten. 
Perplexity is a measure of the branching factor averaged across all possible 
word junctures in the set of legal utterances. The lower the perplexity, the more 
effectively lexical constraints can improve recognition. 

Recognizers based on either ad hoc or statistical models of language and the 
task at hand may be subject to limited portability. The words a talker uses change 
as a function of the topic of discourse, and a recognizer may not be able to make 
such a shift. For example, a carefully constructed grammar for a task that allows 
the user to make inquiries into the state of ships in a navy's fleet will be rather 
different from one used in general business correspondence. Recognizers do not 
yet make use of language representations general enough to make specification of 
the task a simple problem. A more general discussion of methods of specifying 
both syntactic and semantic constraints is found in Chapter 9. 
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ADVANCED RECOGNITION SYSTEMS 

This section briefly describes details of three advanced speech recognizers that 

are considerably more sophisticated than the simplistic example presented early 

in this chapter. These recognizers are research projects, not yet commercial prod­
ucts. This is hardly an exhaustive list of speech recognition research, but it is 

intended to be representative of the approaches being used in modern, large 

vocabulary recognition systems. These descriptions will almost certainly be out of 

date by the time this book is actually published so they should be taken as little 

more than a snapshot of a rapidly evolving field. 

IBM's Tiger 

IBM's Tangora speech recognizer is designed to recognize 5000 to 20,000 words of 

isolated speech [Jelinek 1985]. A real-time version of this research project was 

implemented on a single-slot personal computer board. The Tangora recognizer is 

speaker adaptive with training based on the user's reading a few paragraphs of 

text to calibrate its acoustic model. 
The Tangora recognizer uses a vector quantization front end to classify acous­

tic input, which is then matched to words using discrete Hidden Markov Models 

of phoneme realization. A linguistic decoder then classifies the output of the 

acoustic front end producing a word for output. Tangora is targetted at automatic 

transcription of speech to text in a dictation context. 
The linguistic constraints employed by the second stage of this recognizer are 

based on the probabilities of groups of two or three words occurring in sequence. 

This statistical model, called a bigram or trigram grammar, was derived 

through analysis of a large quantity of text from business correspondence. It 

should be readily apparent that such a representation of the language includes 

both syntactic and semantic information as well as indirectly encoded world 

knowledge. Not only is "late I slept" an unusual sequence due to constraints, but. 

similarly "I slept furiously" is improbable due to its ill-formed semantics; "the 

green cat" is unlikely due to world knowledge that cats do not have green fur. But 

this model cannot distinguish the source of knowledge; it merely represents the 

end result of all factors that contribute to likely word sequences. 

CMU's Sphinx 

Carnegie-Mellon University's Sphinx recognizer is designed for speaker-

independent connected speech recognition [Lee and Hon 1988, Lee 1988]. At 

the time of this writing, it operates in nearly real time using hardware multi­

processor peripherals to aid in the search process. Sphinx operates with a 1000 

word vocabulary and achieves a recognition accuracy percentage in the mid-

nineties when provided with a bigram language model; however, accuracy drops 

to the mid-fifties without the grammar model. 
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Sphinx makes extensive use of Hidden Markov Models: each phone is repre­
sented by an HMM, each word is a network of phones, and the language is a net­
work of words. Phones in function words are modeled separately from other 
phones because of the higher degree of coarticulation and distortion in function 
words. Because function words are common to all vocabularies, they can be mod­
eled using more thoroughly trained HMMs. 

Sphinx uses multiple codebook vector quantization as its acoustic front end. 
Separate codebooks are used to encode energy, cepstral, and differential cepstral 
parameters. The cepstrum is a signal analysis construct gaining popularity with 
speech recognition because it differentiates voicing and vocal tract aspects of 
the speech signal. Differential cepstrum measurements indicate how the cep­
strum changes from one sampling period to the next; this measure is particu­
larly useful for analysis of the most dynamic aspects of speech such as many of 
the consonants. 

MIT's SUMMIT 

The SUMMIT [Zue et al. 1989a] system is a phoneme-based connected speech rec­
ognizer being developed by the Spoken Language Systems Group at M.I.T. In 
recognizing speech, SUMMIT first transforms the speech signal into a represen­
tation modeled after the auditory processing that occurs in our ears. This is a non­
linear transformation based on Seneff's auditory model [Seneff 1988]; it enhances 
acoustic information crucial for recognizing speech and suppresses irrelevant 
detail. Part of this analysis models the transduction between the hairs in the 
cochlea and their associated nerve cells to enhance temporal variation in the input 
emphasizing onsets and offsets crucial to detecting consonants. Another portion, 
which models the nerve cell firing rate related to the characteristic frequency of 
the cell, emphasizes spectral peaks; this is useful for vowel identification. 

The next stage of recognition segments the transformed speech by finding 
acoustic landmarks in the signal. Regions between the landmarks are grouped 
into segments on the basis of similarity. A set of phonetic classifiers assigns prob­
abilistic phonetic labels to each of these portions of the speech signal. Different 
classifiers may be invoked for differentiating among distinct classes of phonemes. 
Words are represented by a network of phonemes; several networks may be used 
to encode alternate pronunciations. A pattern matching algorithm similar to 
dynamic programming matches the phoneme labels of the input against the word 
networks, deducing word boundaries in the process. Coarticulation rules com­
pensate for some phonemic aspects of connected speech. 

SUMMARY 

This chapter has detailed the process of recognizing speech by computers. It 
began with an overview of the recognition process as a set of three basic compo­
nents: an acoustical representation, a vocabulary or set of templates, and a pat­
tern matching process to measure the similarity of an input utterance with each 
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of the set of templates. This process was illustrated by considering a simplistic, 

hypothetical recognizer. The chapter then discussed a full range of possible rec­

ognizer configurations differentiated by the specificity of the talker, the style of 

speaking, and the size of the vocabulary to be recognized. Several techniques 

important for connected and large vocabulary recognition were then introduced; 
these included Dynamic Time Warping, Hidden Markov Models, Vector Quanti­

zation, and language constraints. The chapter concluded with a descriptive 

overview of three well-known research projects on large vocabulary speaker inde­

pendent recognizers. 
This chapter was intended to introduce the technology of speech recognition 

and some of the difficulties it must overcome to be effective. Speech recognition 

algorithms are under continual development and are useful for an ever-expand­

ing range of applications. Even more important for its deployment, the steady 

increases in microprocessor speeds enable even the more sophisticated algo­

rithms to be implemented entirely as software thus encouraging the more 

widespread distribution of applications that make use of recognition. 

The next chapter explores the utility of speech recognition, the classes of appli­

cations for which it may be well suited, and interaction techniques to make effec­

tive use ofrecognition. Of central concern is the issue of speech recognition errors; 

error rates remain the primary deterrent to the successful application of speech 

recognition. But in some specialized application niches speech recognition is 

already being used to improve personal productivity. 

FURTHER READING 

O'Shaughnessy covers many topics in speech recognition thoroughly. Furui and Sondhi is a col­
lection of particularly current papers about all aspects of speech processing with particular 
emphasis on recognition. Although rather technical, it has chapters describing most of the 
concepts and some of the speech-recognition research projects discussed in this chapter. 
Waibel and Lee present a collection of previously published research papers about speech 
recognition. Dixon and Martin is a similar collection of key papers from the 1970s Another 
good source of very good working papers are conference proceedings of the DARPA Speech 
and Natural Language Workshops. 


