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Desktop Audio


Because of limitations in speech technology, its successful deployment has been 
limited to certain situations in which voice offers unique advantages over visual 
interfaces or in which no other interface modality was practical. This bias has 
been reflected in the case studies as well, with their emphasis on hands-and-eyes 
busy environments or tasks oriented around managing voice communication with 
other people. This chapter instead focuses on applications of voice in an ordinary 
desktop computing environment used for day-to-day office activities. To continue 
the theme from the end of the last chapter, once computers manage our tele­
phones and take voice messages for us, what else can we do with this stored 
speech?


Although nearly every office is equipped with a computer as well as a tele­
phone, desktop voice processing is only beginning to become a reality. This gap is 
due in large part to the lack of a convincing argument for desktop audio; much 
office work is handled effectively with the use of keyboard and mouse to access 
text-based applications. To appreciate the potential of voice applications in the 
office we must first understand how speech can benefit office work as well as the 
synergy of using voice across a range of applications instead of in an isolated 
niche. 

For decades computers were used to perform one task at a time; now window 
systems and multiprocessing operating systems give the user the ability to inter­
act with many applications simultaneously. What is true with text-based soft­

ware will be even truer with voice: no single application will dominate computer 
usage or provide sufficient benefit to warrant the purchase of voice processing 
capabilities. Rather in the future we can expect families of voice-capable applica­
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tions running on the desktop sharing data and interaction techniques. Equally 
important to the need to share data among voice applications are the means to 
interchange information between voice and text databases and utilize presenta­

tion methods that allow telephone access to the desktop and other portable 

devices. 
This chapter describes the concept of desktop audio, an environment that 

supports multiple voice applications on a single desktop computer and remote 

voice access to office databases. These ideas have already been touched upon in 

previous chapters: Xspeak (see Chapter 8) used speech recognition at the desktop 
to coordinate window-based interaction with multiple applications, Phone Slave 

(see Chapter 11) included a variety of telephone-related functions in a single 

application, and Voiced Mail (see Chapter 6) provided an integrated remote inter­

face to voice and text messages. 
This chapter considers several aspects of desktop audio. It first explores strate­

gies that can smooth the transition from text-only to multimedia computing in 

the office and then presents a variety of graphical user interfaces to stored voice, 
which can help overcome its slow and serial nature in the desktop environment. 

The text advocates a client-server based software architecture to support multi­

ple voice applications simultaneously. The notion ofvoice as a means of capturing 

much ofour normal office conversations for later retrieval is discussed. In closing, 
the chapter presents a number of case studies to illustrate these desktop audio 

concepts.


EFFECTIVE DEPLOYMENT OF DESKTOP AUDIO 

Most new workstations' are now equipped with a speaker and a microphone and 

increasingly fast processors allow software-based implementations of speech 

recognition, text-to-speech synthesis, audio compression algorithms, and time-

scale modification to intelligibly play voice back in less time than originally spo­

ken. Yet deployment of voice applications has proceeded slowly and lags behind 

the underlying technology. This delay is due in part to the inability of software 

developers to target applications for which voice offers a benefit to the user, in 

part due to the difficulty of developing user interfaces that overcome the slow and 

serial nature of voice as data, and in part due to software architecture constraints 

interfering with the development of applications to be portable across a variety of 

hardware platforms. 
From the desktop audio perspective, much of the difficulty lies in the lack of 

any single ideal voice application. To date the most prevalent speech application 

is voice mail, but current stand-alone implementations of voice mail are deployed 
com­and efficiently managed as part of the telephone system, not a networked 

'The term "workstation" is used in this chapter to refer to any desktop computer. With 
ever-increasing microprocessor speeds, the distinction between "workstation" and "per­
sonal computer" is becoming increasingly blurred. 
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puter resource. The delay in proliferation of voice applications is exacerbated by 
the lack of integration between new voice-capable software and existing applica­
tions. If each speech application uses its own distinct user interface, it is harder 
still on the user to access multiple applications. The absence of a single "killer" 
desktop voice application does not mean speech will not be useful but it does sug­
gest that it is essential to consider how speech applications will work with each 
other, how voice will enhance existing workstation applications, and what unique 

new capabilities voice will enable. 
To succeed voice must offer supplemental value to the existing productivity 

tools on workstations rather than replace those tools. Users have not been willing 
to give up functionality or applications that they are already using for the sake of 

adding voice; voice capability must instead augment these applications as well as 

introduce additional new ways in which to use the computer. Augmenting instead 

of replacing functionality can be accomplished by maintaining compatibility with 
current text-based databases and applications wherever possible. For example, 
the multimedia mail system developed as part of Carnegie Mellon University's 

Andrew project [Morris et al. 1986] added the ability to include nontextual enclo­

sures such as animations within Email messages. Users of a non-Andrew system 
could view the text portion of the message simply as conventional email without 
the animation, enabling Andrew users to continue to exchange messages with the 

non-Andrew Email users. But Andrew multimedia messaging never caught on in 

the larger non-Andrew world because it was so tightly embedded with the rest of 

the Andrew environment and hence not very portable. Recently, the MIME mes­

sage format [Rose 1993] has been proposed for use in the Internet community to 

allow a broader exchange of multimedia messages in a heterogeneous operating 

environment. MIME is based on the desire to make multimedia capabilities avail­

able across the Internet without any modification of mail transport protocols or 

software and includes software to add minimal multimedia support to many mail 

reader programs across many operating systems. Rather than the all-or-nothing 

approach of Andrew (and similar multimedia mail systems), MIME attempts to 

add new media ability while minimizing disruption to traditional text-based 

mail. Desktop voice applications must do the same. 
But even if voice can be added to the desktop with minimal disruption, what 

new capabilities will it provide? Chapter 4 already discussed the expressive rich­

ness ofvoice and its useful role as a document type in and ofitself. With an appro­

priate graphical representation, voice can be mixed with media such as text and 

image as well and even moved between applications. Ordinary office conversa­

tions and meetings can be recorded for future use allowing this important record 

of decision-making activity to be archived and shared. Perhaps most powerful, 

speech user interfaces will allow computers to be accessed in new, nontraditional 

work environments. 
Integrating telephone access with a unified voice application environment can 

result in a synergistic increase in the utility and need of voice as data. Speech 
synthesis can translate text into voice, enabling access to many text databases 

over voice telephone connections. This functionality will prove most valuable for 

retrieving timely personal information while traveling or working away from the 
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office; databases may include telephone numbers and addresses, one's personal 

calendar, and electronic mail. Although voice access will not eliminate the use of 

modems, it is an attractive alternative in that it provides rapid access from any 

telephone obviating the need for additional hardware. 
Perhaps even more significant will be the resulting changes in existing appli­

cations for dynamic support of stored voice as a data type. When users can access 

databases over the telephone some will wish to update them concurrently. If a 

caller wishes to enter data such as an entry in a calendar or the reply to an email 

message, recording a voice snippet is much easier than trying to type text with 

the telephone keypad. However, since we cannot yet reliably translate voice into 

text, the new entry must remain a voice file, and the underlying database 

becomes multimedia. The combination of voice and text data, in turn, has reper­

cussions on the graphical interfaces of desktop applications accessing that 

database. And screen-based voice mail with audio cut and paste allows all the 

user's telephone messages to become data for manipulation by other applications 

as well. 
Voice interfaces allow the telephone to be used as a computer terminal, and 

with the advent of highly portable cellular telephones, users can access their 

desktop from almost anywhere. But other portable technologies will utilize voice, 
and, in turn, contribute to the role of voice as a data type on the desktop. As lap­

top computers shrink to palmtops and smaller, the display and keyboard become 

limiting factors to further size reduction. Voice interfaces require little space; 

hand-held computing appliances may soon be used to record voice notes for later 

inclusion in other desktop applications [Stifelman et al. 1993]. For example, one 

may use a hand-held digital recorder to gather thoughts for a presentation while 

taking a walk or driving to work and later organize the recorded ideas at the 

office. Once uploaded into a desktop computer, graphical tools could allow the 

user to further edit, organize, and annotate the spontaneously spoken ideas into 

a coherent outline or a multimedia document. 

GRAPHICAL USER INTERFACES 

Although the previous section pointed out that nonvisual user interfaces could 

enable computer use in novel situations, most applications of voice as data also 

benefit from visual interfaces when used on the desktop. Graphical representa­

tions of audio cue the user to the presence of voice data in an application as well 

as allow control of playback. Richer graphical interfaces allow direct manipula­

tion of the stored voice by providing a means of positioning playback at random 

points throughout the sound as well as offering visual cues to a sound's overall 

length. 
Simple "sound button" graphical interfaces (see Figure 12.1) use an icon such 

as a sketch of a speaker to alert the user to the presence of a sound. The user can 

click on the icon to play the sound and then click again to stop. Buttons are 

advantageous because they require little screen space, allowing many of them to 

be used by an application or to be mixed with text (see Figure 12.2). Buttons are 
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]FYgur% 1I.1. An assortment of "button" represwtationa to indicate. the 
p ~ w e e  of wund in a vieual uaer interface. These representations are 
fmm (left to right) NeT,  Digital'% Xmedia, and Sun's OpeaWindows. 

Image removed due to copyright restrictions.

Figure 132. Became they are small, buttans can be eaeily mixed with 
t e d  This @me shows voice embedded in a text &maiI me&*, od. a 
NEXT computer. 

intuitive to operah for most uwg familiar with graphical interfaces. The chief 
disdvmtages of button8 am that the user has no eense of how long a sound will 
laet once it starts &ti must listen ta the entire s6md aequantially. The lackdany 
sense of the duration of a sound while it plays makes i$ difficult to quickly search 
a number of sounds fox desired information and  show^ many difficultiehl as~oci- 
ated with similar graphical interfaces [Myers 19851. The ingbili* to skip around 
within gn audio segment renders buthns usem only when they are used ta con- 
trol very short sounds, 

An alter11~k form of graphical user interface dispLaya additional idormation 
h t  the mund H e  and allows greater playback mntral; such visual reprewnta- 
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tions of sound map time to the horizontal dimension, showing a bar the length of 
which indicates sound duration. The user plays the sound by clicking on the bar, 
and as playback progresses a cursor moves in synchronization to indicate tempo­
ral position. With many ofthese interfaces the user can change the playback posi­
tion by clicking to reposition the cursor. Chapter 4 illustrated a variety of time 
bar representations, many showing speech and silence intervals. The Sound-
Viewer is a more recent example of such an interface; it is described below as a 
case study. 

The time bar representation has several advantages over the simple sound but­
ton by indicating the duration of the sound and providing finer control over play­
back. Its main disadvantage is the amount of screen space it requires. This 
difficulty has led to implementations in which the presence of a sound within an 
application is indicated by a small icon; when this icon is clicked on or dragged to 
another location a larger control panel opens up for playback, sound editing, and 
other functions (see Figures 12.3 and 12.4). Such an interface affords many of the 
advantages of the time bar display while saving screen space (especially useful if 
multiple sounds are visible), although it does require additional effort on the part 
of the user, and more importantly requires the user to shift gaze to the location 
where the control panel appears. 

AUDIO SERVER ARCHITECTURES 

An appropriate software architecture is required to support access to desktop 
audio by multiple applications. Current audio servers support digitization and 
playback of voice, but future servers will also incorporate software implementa­
tions of the speech processing technologies discussed throughout this book. 
Software-based speech recognition, speech synthesis, audio data compression, 
time-scaling, and other signal manipulation algorithms are feasible on today's 
workstations; products to perform these operations are already becoming avail­
able. When recognition and synthesis required additional external hardware 
devices or add-in cards, they were costly and unwieldy. When available as soft­
ware, these technologies can be considerably less expensive and more widely 
available and hence attractive to application developers. 

Audio servers allow voice resources (speaker, microphone, voice processing 
algorithms) to be made available to multiple applications running simultane­
ously on one workstation. A server-based approach allows distributed audio pro­
cessing and resource management among a variety of client applications. The 
relationship between an audio server and its clients is similar to that found in a 
server-based window system; instead of directly manipulating audio devices, 
clients make requests to the server, which controls devices on behalf of the 
clients. Because clients do not manipulate hardware directly, each client can 
operate without knowledge of the other clients. The server, or a separate policy 
agent operating in concert with the server, arbitrates conflicting requests (for a 
window system, the policy agent is the window manager). For example, if one 
client requests the server to play a sound while another client is already in the 
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Images removed due to copyright restrictions.

Figure 12.3. The NeXT audio control panel. In the top form sound is rep-
resented only as a bar; by clicking a button the user can invoke the wave-
form envelope display shown at the bottom.

midst of playing a different sound, various policies might be: make the new client

wait, make the first client stop playing, or mix the sounds and play them simul-

taneously.
Because the server approach divides client and server into separate processes

that communicate via a well-known protocol, several additional benefits are real-
ized. An application need not be recompiled to execute with a different version of

Images removed due to copyright restrictions.
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Figure 12.4. Sun's audiotool control panel display
segments and provides editing capabilities.

s speech and silence

the server; the same application binary file can run on different workstations
with different audio hardware, simplifying software distribution. Additionally,

because the server implies an interprocess communication path between client
and server, a client can be made to communicate transparently with servers on its
local or remote workstations across the network.

Another advantage of an audio server is that it frees the client application from
the time-critical task of reading and writing data between the audio devices and
disk files. The server also shelters the application from the detailed program-
ming sequences that control the audio devices; the audio protocol is device inde-
pendent. These characteristics lead to more modular and portable application
software.

The client-server approach is evident in many of the projects described else-
where in this book, such as Etherphone and MICE (see Chapter 11). An early
audio server was developed at the M.I.T. Media Lab [Schmandt and McKenna
1988] in 1984; as with the two examples just mentioned, this server executed on
separate hardware from the client. The availability of inexpensive add-in hard-
ware and the real-time nature of the server's DOS operating system allowed the
audio server to be implemented on a personal computer that communicated with
a Unix host over a serial interface. This early server was motivated largely by the
difficulties of managing the real-time audio data stream on early slow Unix work-
stations. Once playback of a sound begins, it must continue to completion without
interruption; stops and starts in the audio medium are much more jarring to the
user than an interrupted window refresh on a display.

Courtesy of Sun Microsystems, Inc. Used with permission. 
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All audio data was stored on a dedicated disk within the server hardware. The 

server incorporated a request queue; a client could ask the server to prepare for 

a series of play and record operations (e.g., the prompts and message-taking for 

an answering machine) and then let the server execute them without further 

intervention. By queuing requests, an application allowed the server to perform 

some time-consuming operations in advance such as creating and opening files 

and ensured that back-to-back play requests could be performed with no silence 

in between. The client received asynchronous events notifying it of completion of 

each task. 
This server was later extended to include speech recognition, speech synthe­

sis, and several audio compression algorithms, but never fully supported multi­

ple clients' access to the server simultaneously. To do so would have required the 

server to associate requests with clients and maintain the correct state of 

devices for each client. For example, one client may set the output gain high, 

while another sets it low; the server would need to reset the gain of the audio 

device to the appropriate client-dependent level. 

The Olivetti VOX audio server [Arons et al. 19891 provided more sophisti­

cated protocols and implemented resource management for multiple simultane­

ous clients. It digitized and played sounds back from files managed by the 

server, but VOX also included external computer-controlled analog mixing and 

switching equipment to route audio to several speakers located in the same 

or different offices. To support multiple clients, VOX allowed clients to build 

hierarchical CLAUDs (Composite Logical Audio Devices) as server-side con­

structs. A CLAUD defined all the audio resources needed by a client, much as a 

window hierarchy specifies all of the graphical objects belonging to a client of 

a window system server. Again, as with window systems, clients could request 

that a CLAUD be mapped (activated) or unmapped (deactivated). Mapping 

would fail if resources were unavailable because they were currently utilized 

(mapped) by another client. A CLAUD contained a Logical Audio Device 

(LAUD) for each physical device it included; a LAUD stored the desired state of 

the physical devices for a particular client. When a CLAUD became active, the 

physical devices were set to the state appropriate for the client as contained in 

its LAUDs. 
The Digital Equipment Corporation's Xmedia audio server [Angebranndt et al. 

1991] incorporates the server-side client resource constructs of VOX (the com­

posite audio device hierarchy), but the mixing and routing of audio paths are 

completely digital. The protocol for this server is more heavily influenced by that 

of the X window system, including a more sophisticated protocol than VOX for 

allowing a "media manager" to implement resource management policy. The 

Xmedia server also provides audio data paths to the client; in addition to record­

ing or playing from a file, the client can provide or access audio data directly. Its 

internal logic for mixing and synchronizing multiple simultaneous data streams 

extends to control digital video as well as audio. 

The Xmedia server was originally designed in a framework including an audio 

toolkit to free clients from the need to directly interface to the low-level audio 

server protocol, but only a minimal toolkit has been developed to date. A recently 
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published audio server architecture from Hewlett-Packard shows a design very 
similar to that of the Xmedia server [Billman et al. 19921. 

Because of the limited availability of any of the audio servers described so far, 
a new server has recently been developed at the M.I.T. Media Lab; it is used by 
many of the applications described later in this chapter [Arons 1992b]. This 
server does not contain any of the server-side resource management constructs 
from VOX or the Xmedia server but does implement a simple priority-based 
resource management policy. Clients can send audio data to the server or have it 
play from files and receive asynchronous notification of audio events. This server 
includes software for time-scale modification (as well as touch tone detection) 
making it simple for any application to vary playback speed. Other servers, e.g., 
for speech recognition and synthesis, are designed to work in concert with the 
audio server by using its ability to route copies of audio data streams. For exam­
ple, a recognition server will always get copies of audio input while recognition is 
enabled. If some other client requests the server to record a sound, the same 
audio data will be copied into a file. Finally a recording-level client (e.g., to dis­
play a graphical 'VU meter") would request its own copy of audio data whenever 
another client activates audio recording. 2 

The Media Lab's audio server is motivated primarily by the need for effective 
resource management because many applications share the audio device as well 
as audio data itself.In the absence of a policy agent, or audio manager, this server 
implements a simple priority scheme. Clients may declare themselves to be of 
high (urgent), medium (normal), or low (background) priority; higher priority 
requests supersede lower priority ones, whereas lower or equal priority requests 
are queued until the server is idle. When a play operation is superseded by 
another of higher priority, playing pauses and the client is notified; when the new 
request finishes, the interrupted one resumes. An interrupted record operation 
does not resume without client intervention. 

One component of a software architecture missing from the servers just dis­
cussed is an audio toolkit. Graphical user interfaces are usually implemented 
in conjunction with software toolkits consisting of a set of direct manipulation 
objects such as scroll bars, sliders, and dialog boxes.3 Audio toolkit objects might 
include constructs such as a menu, which speaks the user's choices and awaits 
a selection via touch tone, or a form, which speaks, prompts and records replies. 
Resnick's Hyperspeech project implemented a comprehensive set of telephone 
interaction objects to facilitate rapid development of telephone-based commu­
nity bulletin boards [Resnick 1992b, Resnick 1992a, Malone et al. 19871. Another 
such toolkit is described in [Schmandt 1993]; it is heavily used by Phoneshell, 
described below. 

2Actually the meter client would request audio level events whereby the server provides 
periodic updates as to the audio energy level and thereby minimizes the data being trans­
mitted from server to client. 

"These are the widgets of the X-windows community. 
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of audio-capable workstations, plentiful storage, and computer-mediated tele­
phony hardware could allow us to record all the conversations that occur in our 
offices and meeting rooms. There is certainly no doubt that this audio record 
would contain a wealth of useful information and a valuable archive of business 
or engineering design decisions, but it would also include a plethora of social or 
otherwise irrelevant conversations of little archival value. 

How could we access the important portions from such a vast quantity of 
stored voice, which is such a difficult medium to summarize or search? A variety 
of information sources come into play. Situational information specifies the 
circumstances in which a recording was made, but nothing about its contents; 
this includes dates, location, and participants in the conversation. It has been 
suggested that situational information may be adequate for retrieval of other­
wise poorly structured multimedia records such as audio or video recordings 
[Lamming and Newman 1991]. If users are identified by wearing locator devices, 
by face recognition from a video record, or by initiating or receiving a call placed 
by a computer or the telephone network, the audio archive could store a list of 
talkers with each recording session. Applying situational constraints to form 
queries such as "Find all long telephone conversations with Eric last spring" can 
narrow the search immensely. 

Because of the slow and serial nature of speech, playback of monolithic audio 
files is tedious regardless of their length. If structure can be added to the record­
ing, it could provide a means ofbreaking the recording into segments, which indi­
cate reference locations identifying conversational landmarks to assist random 
access techniques. Structure to aid audio retrieval can be created explicitly by 
user activity during recording or derived after the fact based on acoustic analysis. 

For example, participants in a meeting may take notes on laptop computers; 
these text entries can be time-stamped and synchronized to the audio recording. 
Later a graphical conversation browser could tag the visual representation of the 
recording with the text from the notes or alternatively a text viewer could allow 
the user to click on a sentence and hear the associated audio. Acoustic analysis 
can break a conversation into segments delineated by pauses, and this can be 
incorporated into the visual browser as well. A more powerful method is to iden­
tify which speaker is talking at any moment, and visually differentiate the dis­
play of each speaker. 

In some situations more explicit user activity could trigger recording, which 
would yield smaller units to archive, but this action must be unobtrusive. A 
Media Lab project shown in Figure 12.6 displays a graphical interface on the 
workstation while a user is engaged in a telephone call [Hindus 1992]. Speaker 
turns are detected and each scrolls across a small viewing panel showing the 
recent history of the conversation; each box represents the audio of a single turn. 
The user's hands and eyes are free during a phone call, and the mouse can be 
used to start or stop recording at any point. Several portions of the call might be 
recorded, and each is grouped into a "paragraph," or series of consecutive turn 
segments. Text annotation can also be added to the speech display. A similar 
graphical interface can be invoked at a later time for browsing completed tele­
phone calls. 
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D: Hello, this isDebby Hindus speaking. 
B: Hi Deb, it' Bob. I'm just getting out of work, Ifigured I'd call and see how late you're going to stay tonight. 

D: 	 Well, Ithink it'll take me about another hour, hour and a hall, to finish up the things I'm doing now. 
probably do a little shopping on the way.B: OK, I'm just going to head on home, I'I 

D: Well ifyou think of itmaybe you could get some of that good ice cream that you got last week. 
B: OK. By the way, somebody, uh... 
B: mentioned an article you might be able to use 

is
B: inyour tutorial. Debby: Oh really? [Debby's very short tumrnignored.] 
B: Yeah, it's by Grasme Hitat, inthe June'91 Computational Linguistics. 

Figure 12.6. A telephone recording tool shows the recent history of a con­

versation. Each box represents one turn; position differentiates speakers. 

Reprinted with permission from proceedings of the ACM 1992 Conference 

on Computer-SupportedCooperativeWork, @ 1992, ACM. 

Another Media Lab application, Xcapture, records ambient sound in an office 

into a circular buffer or "digital tape loop," which serves as a short-term auditory 

memory aid. The archetypical situation for its use is a collaborative writing ses­

sion; one person suggests an alternate wording for a sentence while the other 

hurries to write it down, but neither can repeat the revision word-for-word and it 

is lost. Xcapture records in the background, displaying a small animated icon 

with a moving bar. When the user clicks on this icon, recording stops and a 

SoundViewer widget appears in a popup window (see Figure 12.7); the Sound-

Viewer allows interactive playback of approximately the last five minutes of 

recording (the precise amount depends on available system memory). The user 

can review this recording, scan it at a faster speed, save it to a file, or cut and 

paste it into another application. 
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Figure 12.7. Xcapture displays a recording of recent conversation in a 
pop-up window. 

Both these projects demonstrated potential but are limited in capability 
[Hindus and Schmandt 1992]. Xcapture is barely adequate for even short-term 
retrieval of a recent conversation because the SoundViewer lacks any cues of 
turns, pauses, or other structural landmarks in a conversation; even five minutes 
is a long duration of sound to navigate. Tools which are more sophisticated need 
to take advantage of multiple sources of structure and acoustic processing to 
enhance interactive retrieval of archived conversations. A requirement for the 
user is that it must take much less time to find the desired information than it 
would to listen to the entire recording sequentially. Playback speed is variable, 
using the time scale modification techniques described in Chapter 3. A recording 
can be scanned by playing small segments in sequence, skipping over larger 
intervening segments. Pauses in the conversation [O'Shaughnessy 1992] or 
emphasis detected using intonational cues [Chen and Withgott 1992] may sug­
gest segments that are more likely to contain semantically significant utterances 
or mark the introduction of fresh topics. When coupled with an interactive user 
interface, such as one based on a touch pad, to scan through a recording at sev­
eral levels of granularity [Arons 19931, none of these techniques need to work per­
fectly. Instead, they can act as an aid to the intelligent user, who may have even 
participated in the conversation being searched and have some memory of its 
overall structure. 

Although recording the ubiquitous audio at work may be straightforward, 
retrieval from audio archives is difficult. Special capture applications unique to 
particular recording situations may be useful in the short term. In the long term, 
more research is needed into techniques to supply structure to recorded sound 
based on acoustic analysis. Additionally, development of interaction techniques, 
based in part on the acoustically derived structure, will facilitate retrieval from 
the audio archive. Whether such factors will impart real value to large audio 
archives remains to be demonstrated. 

E STUDIES CAS

This section presents four case studies emphasizing various aspects of desktop 
audio. The first case study describes the iterative design of a visual representa­
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tion ofstored voice. The second highlights Conversational Desktop, an eight-year­

old project designed to provide functionality spanning many desktop audio appli­

cation areas. The third case study is of a telephone interface to many common 

desktop utilities, which is in use today. The final study returns to visual inter­

faces by examining more recent work in screen interfaces to audio applications 

such as voice mail; these applications complement the telephone interface in the 

third case study and are also in use today. 

EvoItion of aYsubInterfae 

Visual interfaces to stored audio have been a recurring theme in this book. Chap­

ter 4 pointed out the role of a visual user interface for an audio editor. Earlier in 

this chapter we returned to the utility and possible functionality of such an inter­

face, presenting two extremes of graphical control of audio playback. A button-

style interface requires very little screen space but offers minimal functionality; 

its small size allows it to be used repeatedly on the computer display by which­

ever applications contain audio data. These buttons were contrasted with more 

elaborate interfaces which offer visual representations of the stored voice, pro­

vide random access through voice files, and may even support limited editing 

functionality (but at the cost of size and complexity). In the control-panel style 

interface, sounds are represented iconically and the control panel appears when 

a user activates an icon. 
This section considers a case study of the Media Lab's SoundViewer, a graphi­

cal interface which attempts to provide on-the-spot interactivity combined with 

small size so that the interface can be used in place by many applications [Hindus 

et al. 1993]. The SoundViewer uses horizontal size and time marks to convey the 

duration of a sound before a user decides to play it. It provides for direct manipu­

lation at the place on the display where the user's attention is already focused, 

instead ofin a separate control panel. Finally, a SoundViewer can operate in con­

junction with other SoundViewers in the same or other applications to facilitate 

sharing voice data. Because the SoundViewer is an X widget, it can be controlled 

via X window resources and any change to the widget is inherited by all applica­

tions using it (after compilation). An application is required only to set the loca­

tion of the SoundViewer and specify the sound file it is to control; all other 

graphical and audio interactions are managed by the widget. 

The initial design of the SoundViewer was based heavily on earlier M.I.T. 

visual interfaces, including the Intelligent Ear (Chapter 4) and Phone Slave's 

graphical interface (Chapter 11). As with these earlier projects, the visual object's 

size indicates the length ofthe sound and its representation changes appearance 

in synchrony with audio playback. The basic SoundViewer action is shown in 

Figure 12.8; as the sound plays, a bar of contrasting color moves along left to 

right. The left mouse button is used to start and stop playback, while the middle 

button moves the position of the bar. Moving the bar during playback skips to a 

new location in the voice recording. Repeated clicking on the middle button 

repeats a segment over and over, which is particulary useful for tasks such as 

transcribing a phone number from a voice mail meassage. The right mouse but­
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Figure 12.8. As a SoundViewer plays its associated audio file, a bar 
moves left to right in synchrony. 

ton can be used to specify a portion of the SoundViewer, which then becomes the 
audio selection (see Figure 12.9); the selection can be moved to other applications 
using the standard X protocols. 

One issue with visual display of audio data is the mapping between time and 
pixels, or width, which can provide both relative and absolute indications of 
sound length. The SoundViewer uses an internal algorithm (or one supplied by 
the application) to determine the interval at which to display tick marks; indicat­
ing time with too much temporal detail would just blur the marks. Although the 
heights of the tick marks are meant to differentiate them (e.g., those at every 
second are shorter than those at five-second intervals), no users have ever under­
stood this without instruction. SoundViewer width is a very good indicator of rel­
ative length, however. But scale becomes a problem when short sounds are mixed 
with much longer sounds; the time-to-pixels ratio which just allows a 7 minute 
sound to fit on a screen would likely result in a 5 second sound being so short as 
to be rendered almost invisible. The SoundViewer therefore was made to support 
a mode in which sounds less than a specified threshold length are displayed at a 
constant scale to allow relative length comparisons, while longer sounds are 
"crunched" into allocated space by changing the time scale. Although this also 
changes the spacing ofthe tick marks appropriately, and the time bar moves more 
slowly as a result of greater time-to-width compressions, this duration cue is also 
poorly understood by users. 

The tick marks provide useful navigational cues. For example, while listening 
to voice mail, users often watch to note the location of the time bar when the 
caller speaks a phone number; this makes it easy to return to the number at 
the conclusion of the message. But the ticks convey nothing of the content of the 
sound so an alternate representation was developed to display speech and silence 
intervals (see Figure 12.10) similar to Etherphone's visuals. More recently, "dog 

I fll o7i=IIIII illutilIIIIIII 

Figure 12.9. Horizontal streaks provide visual feedback when a portion 
of a SoundViewer's associated sound is selected with the mouse. This 
SoundViewer shows less temporal detail than those in Figure 12.8. 
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Figure 12.10. The addition of speech and silence marking and "dog ears" 

to a SoundViewer. 

ear" markings were added to the SoundViewer. A spot can be marked (using the 
askeyboard) during playback, and the location of the mark, which appears a 

caret symbol, is saved with the sound and appears whenever it is displayed. 

After speech and silence intervals had been added, the SoundViewer was 

made to allow the user to jump ahead to the next speech segment or back to 

repeat the current or previous segments also under keyboard control. Pauses in 

the speech correspond to breath groups and are usually deliberate, semantically 

meaningful speech segments. The SoundViewer also has for some time 	sup-
wereported audio time-scaling to play back sounds faster or slower than they 

recorded (time-scaling algorithms were discussed in Chapter 3). Because this is 

a widget "resource," users can set default time scales for all SoundViewers or for 

those of just a particular application; when users become accustomed to time-

sealed speech they begin to prefer it over normal rate speech. A more recent 

addition provides improved random access; while moving the location bar by 

hand back and forth across the width of the SoundViewer, it plays small chunks 

of sound in synchrony. This feedback provides surprisingly useful navigational 

cues although the proper presentation style is the subject of further research. 

The SoundViewer breaks down for very long sounds. When time is mapped to 

width so as to allow a 10 or 15 minute sound to fit into a reasonable portion of 

the screen, time is so compressed that the sound bar barely moves as it plays, and 

it can be positioned only very coarsely. Also, the speech and silence markings 

interfere with each other when most pauses are shorter than the audio duration 

represented by a single pixel. Although these effects are not noticed on short 

sound snippets characteristic of voice mail or calendar entries, they have become 

problematic for longer sounds such as recordings of meetings or newscasts. A new 

variant of the SoundViewer provides a global and a detailed view of the sound as 

shown in Figure 12.11. The lower representation presents a close-up view and is 

a window into the entire portion of the sound,which appears above. The user can 

start playback, set a position, or make a selection from either view; as the sound 

plays, both views get updated simultaneously. 
The SoundViewer has been used in all the recent Media Lab desktop speech 

applications, some of which are described later in this chapter. It has been effec­

tive at providing a direct manipulation interface to stored voice files while con­

suming minimal screen space. Its visual representations have evolved to better 

facilitate navigation, and additional audio processing enhances the SoundViewer 

with time-scaling and auditory feedback during random access. Maintaining 

consistent visual time scales has been a problem from the beginning, and an aux­

iliary view seems essential for managing very long sounds. 
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Figure 12.11. For very long sounds two representations are provided. 
The lower view is a close up of the entire sound shown above. 

(onversaolocal Desktop 

Conversational Desktop was an early (1985) effort at the Media Lab to present 

285 

­

a vision of the possible range of desktop audio applications [Schmandt and 
Arons 19861. It emphasized integrated telecommunication management com­
bined with extensive use of voice both as a data type and as an element in the 
user interface. In addition to spoken language, Conversational Desktop 
included a touch-sensitive graphical interface which, in anticipation of window 
systems, allowed the user to quickly switch between displays of the calendar or 
voice messages. Conversational Desktop's dialogue system and parsing tech­
niques that cope with fragmentary and error-prone speech recognition were 
described in Chapter 9; this case study focuses on its functionality and integra­
tion of multiple application areas. 

Conversational Desktop operated across multiple workstations. Each work­
station included speech recognition, speech synthesis, audio digitization hard­
ware (implemented on separate dedicated computers acting as servers), and a 
telephone interface. This project spanned telephone management, voice mail, 
scheduling, remote database access, and audio reminders triggered by external 
events. From the standpoint of this chapter, Conversational Desktop's most inter­
esting aspect was the synergy arising from the interaction among these functions. 

Conversational Desktop emphasized the role of the workstation in managing 
both remote data access as well as voice communication through local and wide 
area networks. The workstation acted as a communication agent, contacting 
external databases (a traffic information service and simulated access to airline 
reservation systems) as well as negotiating with agents of other users (schedul­
ing meetings and call setup negotiation). Although services were implemented 
over analog telephone lines and Ethernet, this project was designed in anticipa­
tion of ISDN; calling another Conversational Desktop user established a data 
connection as well as a voice circuit so the users' agents could communicate while 
users were conversing. 

Conversational Desktop placed telephone calls through voice dialing and incor­
porated the conversational answering machine approach first implemented in 
Phone Slave (see Chapter 11). Calls between Conversational Desktop work­
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stations were set up using the local computer network before an analog telephone 

circuit was established; as the calling party was therefore known, the answering 

machine could play personalized messages and inform callers of the status of 

earlier messages just as Phone Slave had.5 Because the Conversational Desktop 

maintained the user's schedule, outgoing messages could be automatically 

selected to account for current activity (in a meeting, out to lunch, out of town, 

etc.). In addition, microphones in the office monitored audio levels to determine 

when visitors were present, and could automatically take messages from 

unknown callers without interrupting a conversation in progress. 

Because it utilized early connected speech recognition, Conversational Desktop 

were required to wear a head-mounted noise-canceling microphone. Thisusers 
microphone was also used during telephone conversations; its noise cancellation 

allowed use of full-duplex speakerphones. Additional microphones mounted by 

the walls were used to detect when other people were speaking; speech present 

at the background microphones but not at the noise-canceling microphone indi­

cated that a visitor was speaking. When the user spoke, a comparison of audio 

levels in the background microphones could determine the direction he was fac­

ing; direction of speaking was used to model user attention and enable recogni­

tion. While the user was facing away from the monitor, speech was ignored, but 

when the user faced the workstation, audio from the microphone was switched to 

the recognizer. Turning towards the workstation also muted audio to the tele­

phone, so the user could have a private conversation with the computer during a 

phone call.6 

Conversational Desktop also allowed its users to record short audio reminders 

for later playback. When issuing the command to record a reminder, the user 

specified the situations or activities that would prompt playback such as "when I 

come in tomorrow." Playback ofa single reminder could be triggered by multiple 

events: a "when I talk to Barry" reminder would be played when Barry called, 

when the user placed a call to Barry, or when the application announced that it 

was time for a scheduled meeting with Barry. Reminders were not played, how­

ever, when another person was detected in the office as the reminder might con­

tain private information. 
This project was an early example of applications of desktop audio. It used 

speech recognition and a dialogue system to address multiple application func. 

tions simultaneously and allowed each function access to stored voice. It explored 

issues in dynamic routing of audio paths among applications and combinations of 

speakers, microphones, and voice processing hardware. By incorporating a range 

of functions, Conversational Desktop demonstrated the synergistic interactions 

among disparate computer applications dealing with what might appear to be a 

single operation by the user, e.g., being reminded of something when placing a 

sWhere available, telephone network provided calling party identification and it could 

serve the same function today. 
"Anunfortunate disadvantage of this arrangement was that the user could not simulta­

neously read the computer screen and talk on the telephone. 
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phone call or automatically updating the outgoing voice mail message depending 
on one's schedule. Finally, Conversational Desktop demonstrated the personal­
ization ofcall setup, depending on factors such as the calling party and activity in 
one's office. 

Conversational Desktop also had a number of limitations. It was written as a 
monolithic application, which eliminated the need for interprocess communica­
tion but interfered with its modularity and hampered its extensibility. It also 
side-stepped some important considerations in managing the focus of speech 
recognition input across multiple applications; if the user is running several pro­
grams at once, which is being addressed at any moment? This project utilized 
custom-built or expensive peripherals, and a good deal of the computing 
resources of a laboratory group, which relegated it to the role of a demonstration 
system instead of one to be used in daily work. The audio switching based on 
direction of speech worked well in a single, sound-treated room, but may not 
extend well to noisy offices or open cubicles. 

Despite these limitations, Conversational Desktop was valuable as an early, 
visionary system that later motivated much of the work described in several 
other projects described as case studies in this book; a remaining case study is 
described in this chapter. Although desktop audio required many exotic peripher­
als in 1985, all the functionality of Conversational Desktop can be implemented 
without additional hardware on workstations recently introduced by several 
vendors. 

Phoneshell [Schmandt 1993]1 is a family ofapplications that allows telephone and 
facsimile access to common desktop utilities including voice mail, electronic text 
mail, name and address database, and calendar. Phoneshell illustrates the utility 
of the telephone as a remote link to the desktop, and the enhanced role voice can 
play as a data type motivated in large part by the difficulty of entering text with 
a telephone. The telephone interface stimulates the use of voice as a data type 
and places new requirements on the screen-based applications that must provide 
access to the stored voice at the desk. 

Phoneshell consists of a set of applications loosely linked together under a top-
level menu, which allows the user to invoke applications sequentially during a 
session. The applications share many aspects of their user interfaces, for consis­
tency, and depend on common lower-level utilities, but each application has been 
developed independently. Figure 12.12 summarizes the functions embedded in 
Phoneshell. 

The voice mail application is similar to many commercial voice mail products 
with several additional features. Voice messages can originate as telephone mes­
sages, from other voice mail users sending a voice message from their worksta­
tions, or via digitized voice attachments encapsulated in email arriving over the 
computer network. In addition to replying to a voice message or recording a mes­
sage for another user, a caller can record "memo" messages. A memo is intended 
for screen access only; instead of cluttering the voice mailbox during telephone 
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Figure 12.12. Phoneshel's menus provide access to a variety of personal 

information management functions. 

access, a separate graphical things-to-do application absorbs the memo messages 

into its own database. Finally, in addition to being able to transfer a voice mes­

sage to another user, a Phoneshell user can save an entire message to her calen­

dar by specifying a date; this is the nongraphical equivalent of audio cut and 

paste. 
The email-reading application is similar in many ways to Voiced Mail described 

in Chapter 6 in that it uses touch tone input to control the reading of email 

messages using speech synthesis. As with Voiced Mail, Phoneshell carefully pre­
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Date: Tue, 30 Mar 93 21:01:55 PST


From: Ben.Stoltz@Eng.Sun.COM (Ben Stoltz)


Message-Id: <9303310501.AA13979@denwa.Eng.Sun.COM>


To: geek@media.mit.edu


Subject: Re: your schedule


Status: RO


> From geek@media.mit.edu Tue Mar 30 15:17:50 1993


> Delivery-Date: Tue, 30 Mar 1993 15:17:53 0800


> Date: Tue, 30 Mar 93 18:17:44 0500


> From: Chris Schmandt <geek@media.mit.edu> 

> To: stoltz@denwa.Eng.Sun.COM, stoltz@Eng


> Subject: your schedule


> What's the possibility of getting together Tuesday?


Dinner would be fun. Tuesday evening.


Figure 12.13. An email message that contains parts of other messages. 

processes text such as email addresses so that they are pronounced correctly 
and breaks a message into sentences so the caller can skip forward and backward 
in the message and repeat the sentence currently being spoken. In addition, 
while reading a message included messages and their mail headers (see Figure 
12.13) are detected; headers are summarized ("Header of message from 'Chris 
Schmandt' in reply to 'your schedule' ") and included text can be skipped over by 
a "jump ahead" button. A message can be faxed as well as read; this is especially 
useful if reviewing mail about subjects such as an agenda or schedule from a 
remote telephone. 

The user can also send replies using either voice or text. Voice replies are 
recorded and then returned to the original sender as a voice attachment to an 
email message using formats from a number of vendors. With voice being sup­
ported on a growing number of workstations, such attachments have become a 
convenient means of reaching many correspondents directly; this had been impos­
sible a decade earlier under Voiced Mail. If the user does not know what message 
format to use or has no reason to believe the sender uses an audio-capable work­
station, text replies can be typed with touch tones. Two keypresses specify each 

mailto:geek@media.mit.edu
mailto:geek@media.mit.edu
http:stoltz@denwa.Eng.Sun.COM


290 VOICE COMMIUNICATIO0 WITH COMPUTERS 

character; the first indicates the group of three letters and the second selects one 

of the three depending on whether it is from the left, middle, or right column of 
a

keys. Punctuation and digits are also available. Whenever the user completes 

word ("*" is the space key), it is echoed. When the user pauses, the current word is 

spelled out. The most recent word can always be deleted. The message includes an 

automatically generated addendum explaining that it was entered using touch-

tones and the author's "signature" information. 
Mail reading isfacilitated by the addition offiltering. Messages can be sorted 

on
into categories such as "urgent," "important," "personal," and "other" based 

keywords found in the subject line or on the basis of the author of the message. 

Phoneshell users can specify arbitrary filtering categories and determine their 

presentation order. A user who receives large quantities of mail is likely to "read" 

only the more important categories using speech synthesis simply because this 

method is so much more time consuming than reading text on a terminal. 

Some aspects of Voiced Mail were not carried over into Phoneshell. Because 

users now get many more email messages, they are less likely to want to hear all 

their messages so Phoneshell speaks the sender and subject of each message but 

does not recite the message itself unless requested. The repetition strategy of 

Voiced Mail (slow down, spell mode) was also abandoned. 

The calendar application, Caltalk, lets users scan their calendars and add new 

entries. A date can be specified with touchtones, and users can hear calendar 

entries for that day item-by-item; text entries are synthesized and voice entries 

are played. New entries are recorded and stored as voice annotations. Portions of 

the calendar can also be faxed if requested. 
Although reciting each entry for a day is effective in describing a particular day, 

in many ways using an auditory calendar interface is more difficult than a graph­

ical interface. Earlier versions of the application provided a "week-at-a-glance" 

function that merely recited each entry day by day; this ineffectively conveys the 

overview available from scanning a graphical representation: "The first part of 

the week is rather free, Wednesday and Thursday have some appointments, and 

Friday is packed." A more recent version of Caltalk includes new week-at-a­

glance and month-at-a-glance functions that attempt to better summarize the 

calendar and recognize keywords such as "important" in calendar entries as well 

as entries that span multiple days or are regularly scheduled each week. Caltalk 

might say, e.g., "Nothing scheduled Monday or Wednesday, important meeting 

with British Telecom and the usual meetings on Tuesday, you are in Palo Alto 

Thursday and Friday." Terse summarization is difficult to do well and illustrates 

some of the problems in converting a tool which usually is accessed visually to a 

voice-only interface. 
A fourth application, Rolotalk, provides access to a personal name and address 

a namedatabase. The caller spells using touch tones, one tone per letter, to 

select a "card"from the database; the user can also specify alternate search cri­

teria, such as company name. Once selected, the user can request telephone 

numbers, postal addresses, electronic mail addresses, and additional informa­

tion about the selected person. Most useful is Rolotalk's ability to communicate 
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with the selected person; it can place a phone call to either the home or work 
number or send a voice or text message. When placing a call, Rolotalk dials the 
destination party and creates a three-way conference call including itself, the 
user, and the called party. Rolotalk remains on the line for several minutes; if it 
hears a "#"tone, it drops the onward call and returns to normal user interaction. 
This allows the user to remain connected to Rolotalk after dialing a busy num­
ber or leaving a message on an answering machine. Message transmission, 
either voice or text, is accomplished by the same mechanisms employed to 
respond to electronic mail. 

In addition to information stored in explicit fields, the underlying Rolotalk 
database allows users to specify links to other files. Typical links contain maps to 
the homes or offices of people in the database or driving directions as text. When 
a user calls in, Rolotalk can try to recite any text file links using speech synthesis 
or can fax all the links to a nearby fax machine. A user can also fax email mes­
sages; this is especially useful for long formatted messages such as a meeting 
agenda or conference schedule. 

Phoneshell also provides several simple communication utilities. A dial-by­
name directory enables a caller to spell out the name of a Media Lab staff mem­
ber and transfer the call to that person's number. Phoneshell can also report the 
locations of Speech Group members using the activity information described in 
Chapter 11. The caller can find out who is currently in the lab or logged in from 
home, call on site users at the nearest telephone, or inquire when a specific user 
was most recently detected. A Phoneshell user can forward either stored fax mes­
sages or an item selected from a small archive of frequently faxed documents 
(e.g., a map to one's office) to another number. 

Although it is currently considered to be in developmental stages as a research 
project, Phoneshell has been deployed for several years at two locations with as 
many as 20 users. Its design has benefited from iterative improvements to its user 
interface due to users' varying requirements and levels of expertise. It has demon­
strated the effectiveness of speech as a means of remote access for the mobile user 
by turning any telephone into a terminal. Although some of the Phoneshell 
databases are more easily accessed by a laptop computer and a modem, it is often 
inconvenient to hook up such hardware at a pay phone, to a cellular phone, or in a 
host's office or home. 

Key to the success of Phoneshell has been its integration of multiple communi­
cation applications. Reading email over the telephone without any ability to reply 
would be very frustrating; the recent surge of support for voice encapsulated in 
email messages facilitates on-the-spot voice replies. It is sometimes useful to 
send a copy of an email message to someone who appears in one's rolodex. The 
necessity of calling separate voice mail and text mail applications to retrieve 
incoming messages would be inconvenient. The ability to query one's calendar 
while hearing messages about upcoming meeting dates makes it possible to coor­
dinate schedules more effectively. In short, Phoneshell presents a work environ­
ment wherein a user can easily switch between as many applications as are 
required to complete a particular task. 
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Visual User Interfaces to Desktop Audio 

Earlier in this chapter visual user interfaces were extolled as the means of pro­

viding the user with random access to voice as data, thereby overcoming some of 

its slow and serial nature. The visual user interface also acts as a spatial repre­

sentation, providing a navigational aid for applications presenting multiple snip­

pets of audio. In the desktop audio context, some applications are intrinsically 

linked to stored voice, such as a graphical interface to voice mail messages. But 

with the increased availability of audio recording hardware on workstations plus 

remote telephone access through interfaces such as Phoneshell, many other 

applications may benefit from stored voice snippets. Both classes of applications 

require graphical user interfaces to stored speech. 
This section describes a family of applications developed in recent years at the 

Media Lab which operate in concert with Phoneshell as well as some of the tele­

phone management utilities described in Chapter 11. The intent of this case 

study is to illustrate this chapter's claims about visual interfaces and interappli­

cation communication with actual examples. The SoundViewer widget described 

earlier in this chapter is used across all of these applications. 

The first application to consider is a visual user interface to voice mail, seen in 

Figure 12.14. When not in use, this application is reduced to a small icon; when 

new voice mail arrives, the icon blinks, serving as a "message waiting" light. If 

the user clicks a mouse button on the icon, the message window opens, displaying 

messages as a column of SoundViewers with indication of the calling party's 

or number if known. Vmail also accepts email messages containing voicename 
attachments in several vendor formats; for these the sender's email address is 

displayed instead of a phone number. When the mouse is moved into the label 

identifying the caller, text in the upper-right corner of the window shows the date 

and time at which the message was recorded. 

Figure 12.14. A visual interface to voice mail. Each row represents a 

message, and displays the caller's name or number, if known. 
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Clicking on a message causes it to play, with the SoundViewer bar moving left-
to-right synchronously. While playing, the bar can be manipulated to move 
around within the message. If a second message is selected, the current message 
stops and the new message begins playback; this makes it easier to scan through 
a number of messages looking for one in particular, as messages typically can 
be identified by playing their first three or four seconds. Playback speed can be 
changed dynamically by a speed slider at the bottom of the window, and the user 
can specify a default playback speed for all messages. 

After playback, a V appears to the left of the message indicating that it has 
been viewed; messages remain until they are explicitly deleted. Messages can 
also be saved to a file, in which case the user specifies a file name. If the caller's 
phone number is known, a return call can be placed by clicking on the "call" but­
ton; this sends a call request message to Xphone (described in Chapter 11). If the 
caller's name or email address is known, the "reply" button sends a request to 
Xmemotool (see below) to record a voice message in response. 

This visual user interface to voice mail has proven very popular among the 
small community of users at the Media Lab. The direct manipulation Sound-
Viewer interface makes it easier to play portions of the sound repeatedly, specifi­
cally while writing down a telephone number. The ability to increase playback 
speed lets users save time listening to messages, and some of them take advan­
tage of this.' Because the application allows multiple users to access the same 
voice mailbox, a group secretary manages four mailboxes with 20 to 30 messages 
a day. Although many users delete messages immediately after they have been 
read, some leave 10 or 20 messages in their mailbox because the visual interface 
makes it easy to navigate between them and quickly find a particular old mes­
sage; this is cumbersome with a tone-based telephone interface. 

Users can also move messages or portions of messages to other applications. 
Holding down a mouse button and dragging the cursor across a SoundViewer 
selects a portion of sound, which can then be pasted into one's calendar, for exam­
ple, or into the Sedit editor (described in Chapter 4) for further annotation. After 
editing, the resulting sound file can be forwarded to another user by pasting it 
into Xmemotool. 

Xmemotool (see Figure 12.15) is a window-based utility for recording voice mes­
sages. Messages can be composed for other local voice mail subscribers or sent to 
remote users as email messages, in which case one of several sound file formats 
must be selected. Xmemotool can also receive the current audio selection instead 
of taking a new recording; this allows a segment to be cut from a SoundViewer in 
any application and pasted in as a voice message to be sent. 

Xcal (see Figure 12.16) is a visual user interface to a calendar database. In 
many respects it is similar to a variety of calendar applications with the differ­
ence being that Xcal also supports voice annotations. Voice annotations may be 
recorded directly into Xcal but are more likely to be recorded over the telephone 
via Phoneshell. Voice entries can also be made by cutting and pasting from other 

'A playback speed of 1.4 times faster than the original seems popular. 
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Figure 12.15. Xmemotool, an on-screen voice message taker. 
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Figure 12.16. A personal calender containing voice and text entries. 

applications; e.g., a user may select a portion of a voice message from a caller who 

will visit in a few days and paste that into the calendar as a reminder of the visit 

or to suggest topics for discussion during the visit. 
Another application, ToDo, shown in Figure 12.7, combines voice and text in 

a things-to-do list. A user can enter voice or text notes while at the workstation, 

but voice notes more frequently originate from telephone interactions with 

Phoneshell. While accessing voice mail in PhoneShell, a user records a "memo"; 

this sound file is then incorporated into the ToDo database. 

While each of these applications is fairly basic in isolation, it is their combina­

tion on a single workstation screen that renders them most powerful. In practice, 

little of the audio data used in these applications is recorded at the workstation; 

text is usually preferred simply because it is easier to retrieve at a later date. 

Instead, voice annotations arrive over the telephone into the databases used by 

these applications, either in the user's own voice via Phoneshell or as portions of 

from other people through audio cut and paste. Although none of voice messages 
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Figure 12.17. A personal project manager containing voice as well as text 
entries. Voice entries are most often recorded over the telephone using 
Phoneshell. 

these applications is overwhelming in isolation, the appropriateness and ease 
with which they can be used in combination hints at the ultimate utility of desk­
top audio. 

SUMMARY 

This chapter builds on the previous chapter's point of view of unifying telephones 
and computers by presenting the concept of Desktop Audio, the integration of 
voice processing into screen-based desktop computing. It started by arguing that 
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the successful deployment of voice applications depends on a number of factors. 

The most important factor for success is that voice must add value to existing 

work practices, as it is unlikely that any single new application is going to radi­

cally change the ways in which office computers are being used. But it can 

enhance current productivity tools, e.g., by providing better user interfaces to 

current voice systems such as voice mail. Desktop voice processing can enable 

remote access over the telephone to desktop applications and their databases as 

was described in the case study on Phoneshell. The case study on Conversational 

Desktop was meant to illustrate this broad range of potential Desktop Audio 

functionality, and how it benefits from the integration of multiple voice process­

ing technologies. 
Desktop Audio requires graphical user interfaces to indicate the presence of 

stored voice within an application and to control its playback. Graphical inter­

faces can also support cut-and-paste of stored voice between applications. Com­

mon interfaces are the "button," which implements click-to-play while requiring 

little screen space, and more elaborate audio playback control panels which may 

also provide a temporal representation of of the stored voice. The SoundViewer, 

described as a case study, attempts to provide the enhanced functionality of con­

trol panels while minimizing its screen space requirements. The SoundViewer 

was shown in use in an array of applications discussed in the final case study. 

Desktop Audio also benefits from a client-server architecture, which enables 

multiple applications to make use of digital audio resources simultaneously with­

out interfering with each other. Audio toolkits should insulate clients from details 

of the audio server's protocol and provide convenient user interface building 

blocks to enable rapid application development. A number of server architectures 

were discussed in detail. 
Desktop Audio has become a reality only very recently, driven primarily by the 

increased speeds of workstations. Issues with appropriateness of speech applica­

tions as well as the techniques to employ voice processing technologies effectively 

all come to bear on this integrated approach. With proper integration, voice can 

be used seamlessly across a range of tasks we perform in our daily work lives. 




