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Complexity in AD


• Complexity

“Measure of uncertainty in achieving the desired functional 
requirements of a system” 

– Difficulty 
– Relativity 
– Information 
– Ignorance 
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Four types of complexity in AD


Complexity 
Measure of uncertainty in achieving FR 

Complexity Complexity 

Real 
complexity 

Imaginary 
complexity 

Combinatorial 
complexity 

Periodic 
complexity 

Does uncertainty 
change with time? 

Time-independent Time-dependent 
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Complexity: A measure of uncertainty in achieving the desired set 

of FRs of a system


•	 Time-independent real complexity 
“Measure of uncertainty when the probability of achieving the functional 
requirements is less than 1.0 (because the common range is not identical to the 
system range)” 

• Time-independent imaginary complexity 
“Uncertainty that arises because of the designer’s lack of knowledge and 
understanding of a specific design itself” 

•	 Time-dependent combinatorial complexity 
“Time-dependent combinatorial complexity arises because in many situations, 
future events cannot be predicted a priori. … This type of time-dependent 
complexity will be defined as time-dependent combinatorial complexity.” 

• Time-dependent periodic complexity 
“Consider the problem of scheduling airline flights. … it is periodic and thus 
uncertainties created during the prior period are irrelevant. … This type of time-
dependent complexity will be defined as time-dependent periodic complexity.” 
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Time-independent Real Complexity


•	 Time-independent real complexity 
–	 caused by system range’s being outside of the design range. 
–	 Real complexity ~ Information content 
–	 Take ui as a random variable 

ui = 1 (success) with P(FRi = success) 

0 (failure) 1-P(FRi = success) 


–	 Information content: 


I(ui= 1) ” - log2P(FRi =success)
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Time-independent Imaginary complexity


• Imaginary complexity ~ Ignorance 
• Ignorance causes complexity. 
• Types of ignorance 

– Functional requirement 
– Knowledge required to synthesize(or identify) design parameters 
– Ignorance about the interactions between FRs and DPs 

• p (probability of selecting a right sequence) 
– For uncoupled design, p= 1 
– For decoupled design, p= z/n! 
– For coupled design, p = 0 
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Time-dependent complexity


•	 Time-dependency 
–	 Complexity ” Uncertainty in achieving a set of FR 
–	 Complexity is time-dependent if


1) uncertainty (probabilistic) is time-dependent

Time-varying system range


2) behavior of FR is time-dependent

FR = FR(t)


•	 Combinatorial / Periodic complexity 
–	 Uncertainty increases indefinitely : combinatorial complexity 
–	 Uncertainty in one period is irrelevant to the next period : 

periodic complexity 
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Origins of complexity and reduction
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Time-independent


• Minimize Real complexity by 
– Eliminating source of variation 
– Desensitizing w.r.t. variation 
– Compensating error 

• Eliminate Imaginary complexity by

– Achieving uncoupled design 
– Identifying design matrix 
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Time-dependent complexity


Combinatorial complexity 
� Periodic complexity 
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Time-varying system range


• Detect changes in system range 
• Prevent system range deterioration by design

• Bring the system range back into design range 


by re-initialization 
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(a) (b)

Prevent system range deterioration by design


By eliminating coupling between ‘turn’ and ‘grasp’, 
one can effectively delay system range deterioration. 

Metal 

of the shaft 

Slot 

A 

A 

Milled Flat end 
of the shaftMilled Flat end 

shaft	 Injection molded 
nylon Knob 

(a) (b) 
Section view AA 

N. P. Suh, Axiomatic Design: Advances and Applications, 2001 
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Bring the system range back into design range: Re-

initialization


Example: Design of Low Friction Surface 
•	 Dominant friction mechanism: Plowing by wear debris 

•	 System range (particle size) moves out of the desired design range 
� Need to re-initialize 

Figure removed for copyright reasons.	 Figure removed for copyright reasons. 

N. P. Suh and H.-C. Sin, Genesis of Friction, Wear, 1981	 S. T. Oktay and N. P. Suh, Wear debris formation and 
Agglomeration, Journal of Tribology, 1992 
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Design of Low Friction Surface


• Periodic undulation re-initializes the system range 

Figures removed for copyright reasons. 

S. T. Oktay and N. P. Suh, Wear debris formation and agglomeration, Journal of Tribology, 1992 
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Example: Scheduling of mfg system


Periodicity should be introduced & maintained to prevent 
the system from developing chaotic behavior 

Subsystem X Subsystem Y 
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Problem description


B C 

DA 

IN 
face 

Subsystem Y 

Subsys 
X 

Maximum utilization rate for the machine Y 

Transport from C to D must be immediate 

Station PTi or CTY 

(sec) machines 
MvPki 
(sec) 

MvPli 
(sec) 

IN - 1 5 -

a 30 1 5 5 
b 40 1 5 5 
c 1 5 5 

X 

d 80 2 5 5 
Y 60–5 1 - 5 

* 

70 seconds when X determines the 
system speed 

the system speed 

Inter­

• Objective 

• Constraint 

Number of 

50 

• Fastest speed

65-75 seconds when Y determines 

* Speed is measured by throughput time: shorter time means faster speed 
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Time, tFPX 

6th part 
ready at X


5th part

ready at X


4th part 
ready at X


3rd part

ready at X


2 FPX 3 FPX 4 FPX


1st part 2nd part

ready at X ready at X
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1st demand 
from Y 

Y process

strats


FPY,1 

FPY,2 

FPY,3 

5th demand 
from Y 

Y process 
starts 

D 5 

FPY,4 

FPY,5 

z 2 

z 3 

z 4 

z 6 

1st part 2nd part 

3rd part 
ready at X 

4th part 
ready at X 

5th part 
ready at X 

6th part 
ready at X 

Time, tFPX 2 FPX 3 FPX 4 FPX 

ready at X ready at X 
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Machine d1

Machine c Machine d2

Machine b Machine c Machine d1

Machine a Machine b Machine c

SP=70sec Machine a Machine b

SP=70sec Machine a

Figure 10. Steady state operation with 70 seconds sending period

CTY : … 60sec - 60sec - 60sec - 60sec - 55sec - …


Y FINISH 

Y START Y FINISH 
CT Y = 60  sec Transport 

1 2 Y START (next period) 
Max[ CT Y ] = 6 5 sec 

1 2 
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3 4 

Y FINISH

Y START Y FINISH
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Machine d1 1 2
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Machine b 5 6
5 6 Machine c 3 4
3 4 Machine d1 
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9 10 7 8 

9 10 
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New panel
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Figure 10. Steady state operation with 70 seconds sending period 

From Lee, Taesik. "Complexity Theory in Axiomatic Design." MIT PhD Thesis, 2003. 
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Figure 11 (b) 
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Figure 11 (c) 

From Lee, Taesik. "Complexity Theory in Axiomatic Design." MIT PhD Thesis, 2003. 
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Average throughput time = (75+75+75+100)/4 = 81.25


From Lee, Taesik. "Complexity Theory in Axiomatic Design." MIT PhD Thesis, 2003. 
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•	 Single perturbation from subsystem Y causes incomplete 
period in downstream 

•	 The system regains periodicity after the perturbation is 
removed but with undesirable performance 

•	 Throughput time is 81.25 seconds in average

–	 Slower than the system capability 
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Re-initialization scheme in scheduling


•	 Define a “renewal” event that imposes period 
u(0) = { u0(t), u1(t), …, uk-1(t), uk(t), uk+1(t), …, uN(t)} 

= {0, 0, …, 0, 0, 0, …, 0} 
: 

u(T-D) = {1, 1, …, 1, 0, 1, …, 1}

u(T) = {1, 1, …, 1, 1, 1, …, 1}

u(T+e) = {0, 0, …, 0, 0, 0, …, 0} = u(0)


•	 Scheduling activity is confined within such a period with a goal of 
maintaining “periodicity” 
–	 Conditional renewal event


tini = trequest if trequest ‡ 70 sec ( FPX )

tini = 70sec if trequest < 70 sec
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1st demand 
from Y 

Y process

strats


FPY,1 

FPY,2 

FPY,3 

2nd part 
3rd part 
ready at X 

4th part 
ready at X 

5th demand 
from Y Y process 
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Time, t 
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4th 
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D 5 

Y 
process 
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z 6 

t 4 
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ready at X 

• Each period is independent (memoryless) 
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Conclusion


•	 Breakdown of functional periodicity results in sub-optimal 
throughput rate 

•	 Periodicity should be introduced & maintained to prevent 
the system from developing chaotic behavior 
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Example: Cell division


•	 A cell has a mechanism to coordinate cycles of two 
subsystems such that the overall periodicity is 
maintained 

• Break-down of functional periodicity leads to anomaly of 

cell division and further chaotic behavior of the system


•	 Maintaining functional periodicity in the cell cycle is an 
important functional requirement for cell division 
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Overview of the Cell Cycle


Figure removed for copyright reasons. 

* Figure taken from Molecular Biology of the Cell, Alberts, Garland Science 
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Chromosome cycle & Centrosome cycle


Figure removed for copyright reasons. 

* Figure taken from Molecular Biology of the Cell, Alberts, Garland Science 
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Importance of the correct number of chromosomes and 

centrosomes


• Centrosomal abnormalities 
– Chromosome missegregation 
– Aneuploidy 

Figure removed for copyright reasons. 

Figure 2 in Nigg, E. A. "Centrosome abberation: cause or 
consequence of cancer progression?" Nature Reviews Cancer 2 (2002): 815-825. 

Figure removed for copyright reasons. 

* Figure taken from http://www.sivf.com.au/chromosomes.htm 

Taesik Lee © 2005 



Functional periodicity


Figure removed for copyright reasons.

See Figure 1 in Nigg, E. A. "Centrosome abberation: cause or consequence of 

cancer progression?" Nature Reviews Cancer 2 (2002): 815-825.
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Mechanism
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Conclusion


•	 A cell has a mechanism to coordinate cycles of two 
subsystems such that the overall periodicity is 
maintained 

•	 Maintaining functional periodicity in the cell cycle is an 
important functional requirement for cell division 
–	 Can pose questions with new perspective 
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Time-dependent FR


• Functional periodicity


•	 u(t) = {u1(t), u2(t), … , uN(t)} 
Periodic – There exist Ti s.t. u(Ti) = u(Tj) with regular transition pattern 
Semi-periodic – There exist Ti s.t. u(Ti) = u(Tj) without regular transition 

pattern


Aperiodic – None of the above
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Uncertainty and functional periodicity


•	 Ps(t) = P(u(t) = u*(t)) 
–	 For periodic & semi-periodic FR(t), Ps returns to one at the 

beginning of a new period 

•	 Predictability of FR 
–	 (Periodicity) fi (Predictability) 
–	 (Unpredictability) fi (Aperiodicity)    �


~ (Aperiodicity) fi ~ (Unpredictability) 


• Uncertainty in current period is independent of a prior 

period only if the initial state is properly established 
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