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Agenda
• Conventional Control Charts

– Xbar and S

• Alternative Control Charts
– Moving average
– EWMA
– CUSUM

• Multivariate SPC
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Xbar Chart
Process Model: x ~ N(5,1), n = 9

• Is process in control?
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Run Data (n=9 sample size)
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S Chart

0.0

0.5

1.0

1.5

2.0

2.5

3.0
S

ta
nd

ar
d 

D
ev

ia
tio

n 
of

 x

1 2 3 4 5 6 7 8 9 10 11 12 13
Sample

µ0=0.969

LCL=0.232

UCL=1.707
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n measurements
at sample j

x R j =
1
n

xi
i = j

j + n

∑

SR j
2 =
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∑ − x Rj )
2

Running Average

Running Variance

• More averages/Data 
• Can use run data alone and   

average for S only
• Can use to improve resolution   

of mean shift

Alternative Charts: Running Averages
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Simplest Case: Moving Average
• Pick window size (e.g., w = 9)
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yj = a1x j −1 + a2x j −2 + a3 xj −3 + ...

General Case: Weighted Averages

• How should we weight measurements?
– All equally? (as with Moving Average)

– Based on how recent?
• e.g. Most recent are more relevant than less 

recent?
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              Wt − i = r (1− r )i

Exponential Weights
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Exponentially Weighted Moving Average: 
(EWMA)

Ai = rxi + (1 − r)Ai −1 Recursive EWMA

UCL, LCL = x ± 3σ A

σ A =
σ x
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Effect of r on σ multiplier
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SO WHAT?
• The variance will be less than with xbar, 

• n=1 case is valid
• If r=1 we have “unfiltered” data

– Run data stays run data
– Sequential averages remain 

• If r<<1 we get long weighting and long delays
– “Stronger” filter; longer response time
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EWMA vs. Xbar
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Mean Shift Sensitivity
EWMA and Xbar comparison
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Effect of r
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Small Mean Shifts

• What if Δμx is small with respect to σx ?

• But it is “persistent”

• How could we detect?
– ARL for xbar would be too large
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Another Approach: Cumulative Sums

• Add up deviations from mean
– A Discrete Time Integrator

• Since E{x-μ}=0   this sum should stay near 
zero when in control

• Any bias (mean shift) in x will show as a trend

C j = (xi
i=1

j

∑ − x)
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Mean Shift Sensitivity: CUSUM
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Control Limits for CUSUM

• Significance of Slope Changes?
– Detecting Mean Shifts

• Use of v-mask
– Slope Test with Deadband

d
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Lower decision line
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 k = horizontal scale 
       factor for plot
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Use of Mask
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An Alternative
• Define the Normalized Statistic

• And the CUSUM statistic

Zi =
Xi − μ x

σ x

Si =
Zi

i =1

t

∑
t

Which has an 
expected mean of 
0 and variance of 1

Which has an 
expected mean of 
0 and variance of 1

Chart with Centerline =0 and Limits = ±3
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Example for Mean Shift = 1σ
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Tabular CUSUM

• Create Threshold Variables: 

Ci
+ = max[0, xi − (μ0 + K ) + Ci −1

+ ]
Ci

− = max[0,(μ0 − K ) − xi + Ci −1
− ]

K= threshold or slack value for 
accumulation

K =
Δμ
2

Δμ = mean shift to detect

H :  alarm level (typically 5σ)

Accumulates 
deviations 
from the 
mean

typical
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Threshold Plot
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Alternative Charts Summary
• Noisy data need some filtering
• Sampling strategy can guarantee 

independence
• Linear discrete filters been proposed

– EWMA
– Running Integrator

• Choice depends on nature of process
• Noisy data need some filtering, BUT

– Should generally monitor variance too!
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Motivation: Multivariate Process Control

• More than one output of concern
– many univariate control charts
– many false alarms if not designed properly
– common mistake #1

• Outputs may be coupled
– exhibit covariance
– independent probability models may not be 

appropriate
– common mistake #2
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Mistake #1 – Multiple Charts

• Multiple (independent) parameters being 
monitored at a process step
– set control limits based on acceptable 

α = Pr(false alarm)
• E.g., α = 0.0027 (typical 3σ control limits), so 1/370 runs 

will be a false alarm
– Consider p separate control charts

• What is aggregate false alarm probability?
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Mistake #1 – Multiple 
Tests for Significant Effects

• Multiple control charts are just a running 
hypothesis test – is process “in control” or 
has something statistically significant 
occurred (i.e., “unlikely to have occurred 
by chance”)?

• Same common mistake (testing for 
multiple significant effects and 
misinterpreting significance) applies to 
many uses of statistics – such as medical 
research!
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The Economist (Feb. 22, 2007)

Text removed due to copyright restrictions. Please 
see The Economist, Science and Technology. 

“Signs of the times.” February 22, 2007.
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Approximate Corrections for 
Multiple (Independent) Charts

• Approach: fixed α’
– Decide aggregate acceptable false alarm rate, α’
– Set individual chart α to compensate

– Expand individual control chart limits to match
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Mistake #2: Assuming Independent 
Parameters

• Performance related to many variables 
• Outputs are often interrelated

– e.g., two dimensions that make up a fit
– thickness and strength
– depth and width of a feature (e.g.. micro embossing)
– multiple dimensions of body in white (BIW)
– multiple characteristics on a wafer

• Why are independent charts deceiving?
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Examples

• Body in White (BIW) assembly
– Multiple individual dimensions measured
– All could be OK and yet BIW be out of spec

• Injection molding part with multiple key 
dimensions

• Numerous critical dimensions on a 
semiconductor wafer or microfluidic chip
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LFM Application

Rob York ‘95 

“Distributed Gaging 
Methodologies for Variation 
Reduction in and 
Automotive Body Shop”

Rob York ‘95 

“Distributed Gaging 
Methodologies for Variation 
Reduction in and 
Automotive Body Shop”

Body in White “Indicator”
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Independent Random Variables
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Correlated Random Variables
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Outliers?
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Multivariate Charts

• Create a single chart based on joint 
probability distribution
– Using sample statistics: Hotelling T2

• Set limits to detect mean shift based on α
• Find a way to back out the underlying 

causes
• EWMA and CUSUM extensions

– MEWMA and MCUSUM
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Background
• Joint Probability Distributions
• Development of a single scale control chart

– Hotelling T2

• Causality Detection
– Which characteristic likely caused a problem

• Reduction of Large Dimension Problems
– Principal Component Analysis (PCA)



40Manufacturing

Multivariate Elements
• Given a vector of measurements

• We can define vector of means:

• and covariance matrix:
where p = # parameters

variance

covariance
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Joint Probability Distributions

• Single Variable Normal Distribution

• Multivariable Normal Distribution

squared standardized
distance from

mean

squared standardized
distance from mean
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Sample Statistics
• For a set of samples of the vector x

• Sample Mean

• Sample Covariance
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Chi-Squared Example - True Distributions 
Known, Two Variables

• If we know μ and Σ  a priori:

will be distributed as

– sum of squares of two unit normals

• More generally, for p variables:

distributed as        (and n = # samples)
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Control Chart for χ2? 
• Assume an acceptable probability of Type I 

errors (upper α)
• UCL = χ2

α, p
– where p = order of the system

• If process means are µ1 and µ2 then χ2
0 < UCL
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Univariate vs. χ2 Chart
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Multivariate Chart with 
No Prior Statistics: T2

• If we must use data to get
• Define a new statistic, Hotelling T2

• Where       is the vector of the averages for 
each variable over all measurements

• S is the matrix of sample covariance over all 
data

x   and  S

x
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Similarity of T2 and t2

vs.
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Distribution for T2

– Given by a scaled F distribution

α is type I error probability
p and (mn – m – p + 1) are d.o.f. for the F distribution
n is the size of a given sample
m is the number of samples taken
p is the number of outputs
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F - Distribution

Significance level α

Tabulated Values

Fν1 ,ν2
ν1 = 8,ν2 = 16

Fα , p,(mn− m − p+1)
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Phase I and II?
• Phase I - Establishing Limits

• Phase II - Monitoring the Process

NB if m used in phase 1 is large then they are nearly the same
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Example
• Fiber production
• Outputs are strength and weight
• 20 samples of subgroups size 4

– m = 20, n = 4
• Compare T2 result to individual control charts
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Data Set
Output x1 Output x2

Sample Subgroup n=4 R1 Subgroup n=4
1 80 82 78 85 7 19 22 20 20
2 75 78 84 81 9 24 21 18 21
3 83 86 84 87 4 19 24 21 22
4 79 84 80 83 5 18 20 17 16
5 82 81 78 86 8 23 21 18 22
6 86 84 85 87 3 21 20 23 21
7 84 88 82 85 6 19 23 19 22
8 76 84 78 82 8 22 17 19 18
9 85 88 85 87 3 18 16 20 16
10 80 78 81 83 5 18 19 20 18
11 86 84 85 86 2 23 20 24 22
12 81 81 83 82 2 22 21 23 21
13 81 86 82 79 7 16 18 20 19
14 75 78 82 80 7 22 21 23 22
15 77 84 78 85 8 22 19 21 18
16 86 82 84 84 4 19 23 18 22
17 84 85 78 79 7 17 22 18 19
18 82 86 79 83 7 20 19 23 21
19 79 88 85 83 9 21 23 20 18
20 80 84 82 85 5 18 22 19 20

Mean Vector Covariance Matrix

82.46 7.51 -0.35
20.18 -0.35 3.29
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Cross Plot of Data
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T2  Chart
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Individual Xbar Charts

17.00

18.00

19.00

20.00

21.00

22.00

23.00

24.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

X2 bar

UCL X2

LCL X2

74.00

76.00

78.00

80.00

82.00

84.00

86.00

88.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

X1 bar

UCL X1

LCL X1



56Manufacturing

Finding Cause of Alarms
• With only one variable to plot, which 

variable(s) caused an alarm?
• Montgomery 

– Compute T2

– Compute T2
(i) where the i th variable is not included

– Define the relative contribution of each variable as
• di = T2 - T2

(i) 
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Principal Component Analysis

• Some systems may have many measured 
variables p
– Often, strong correlation among these variables: 

actual degrees of freedom are fewer
• Approach: reduce order of system to track only 

q << p variables
– where each z1 … zq is a linear combination of the 

measured x1 … xp variables
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Principal Component Analysis

• x1 and x2 are highly correlated in the z1
direction

• Can define new axes zi in order of 
decreasing variance in the data

• The zi are independent
• May choose to neglect dimensions with 

only small contributions to total variance 
⇒ dimension reduction

Truncate at q < p
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Principal Component Analysis
• Finding the cij that define the principal 

components:
– Find Σ covariance matrix for data x
– Let eigenvalues of Σ be 
– Then constants cij are the elements of the ith

eigenvector associated with eigenvalue λis
• Let C be the matrix whose columns are the eigenvectors
• Then

where Λ is a p x p diagonal matrix whose diagonals are the 
eigenvalues

• Can find C efficiently by singular value decomposition (SVD)
– The fraction of variability explained by the ith principal 

components is
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Extension to EWMA and CUSUM

• Define a vector EWMA

• And for the control chart plot

where

Zi = rxi + (1 + r)Zi −1

Ti
2 = Zi

T ΣZi

−1Zi

ΣZi i =
r

2 − r
[1 − (1 − r)2 ]Σ
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Conclusions

• Multivariate processes need multivariate 
statistical methods

• Complexity of approach mitigated by 
computer codes

• Requires understanding of underlying process 
to see if necessary
– i.e. if there is correlation among the variables of 

interest
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