MIT OpenCourseWare http://ocw.mit.edu

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Control of Manufacturing Processes

Subject 2.830/6.780/ESD.63

Spring 2008

Lecture #8

Process Capability & Alternative SPC Methods

March 4, 2008

Agenda

- Control Chart Review
 - hypothesis tests: α , β and n
 - control charts: α , β , n, and average run length (ARL)

Process Capability

Advanced Control Chart Concepts

Average Run Length

• How often will the data exceed the $\pm 3\sigma$ limits if $\Delta\mu_x = 0$?

$$Prob(x > \mu_x + 3\sigma_{\overline{x}}) + Prob(x < \mu_x - 3\sigma_{\overline{x}})$$

Detecting Mean Shifts: Chart Sensitivity

• Consider a real shift of $\Delta\mu_{x}$:

 How many samples before we can expect to detect the shift on the xbar chart?

Average Run Length

• How often will the data exceed the $\pm 3\sigma$ limits if $\Delta \mu_x = \pm 1\sigma$?

Prob(
$$x > \mu_x + 2\sigma_{\bar{x}}$$
) + Prob($x < \mu_x - 4\sigma_{\bar{x}}$)
= 0.023 + 0.001 = 24 / 1000

Definition

• Average Run Length (arl): Number of runs (or samples) before we can expect a limit to be exceeded = $1/p_e$

- for
$$\Delta \mu = 0$$
 arl = 3/1000 = 333 samples

- for
$$\Delta\mu = 1\sigma$$
 arl = 24/1000 = 42 samples

Even with a mean shift as large as 1σ, it could take **42** samples before we know it!!!

Effect of Sample Size n on ARL

- Assume the same $\Delta \mu = 1\sigma$
 - Note that $\Delta\mu$ is an absolute value

• If we increase n, the Variance of xbar decreases: $\sigma_x = \frac{\sigma_x}{\sigma_x}$

 $\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{n}}$

So our ± 3σ limits move closer together

ARL Example

As n increases p_e increases so ARL decreases

Another Use of the Statistical Process Model: The Manufacturing Design Interface

The Manufacturing -Design Interface

We now have an empirical model of the process

How "good" is the process?

Is it capable of producing what we need?

Process Capability

- Assume Process is In-control
- Described fully by xbar and s
- Compare to Design Specifications
 - Tolerances
 - Quality Loss

Design Specifications

Tolerances: Upper and Lower Limits

Design Specifications

 Quality Loss: Penalty for Any Deviation from Target

QLF = L*(x-x*)²

How to
Calibrate?

$$x^*=target$$

Use of Tolerances: Process Capability

- Define Process using a Normal Distribution
- Superimpose x*, LSL and USL
- Evaluate Expected Performance

Process Capability

Definitions

$$C_p = \frac{(USL - LSL)}{6\sigma} = \frac{\text{tolerance range}}{99.97\% \text{ confidence range}}$$

- Compares ranges only
- No effect of a mean shift

Process Capability: Cpk

$$C_{pk} = \min\left(\frac{(USL - \mu)}{3\sigma}, \frac{(LSL - \mu)}{3\sigma}\right)$$

= Minimum of the normalized deviation from the mean

Compares effect of offsets

$$Cp = 1; Cpk = 1$$

$$Cp = 1; Cpk = 0$$

$$Cp = 2$$
; $Cpk = 1$

$$Cp = 2; Cpk = 2$$

Effect of Changes

- In Design Specs
- In Process Mean
- In Process Variance

What are good values of Cp and Cpk?

Cpk Table

Cpk	Z	P <ls or<br="">P>USL</ls>
1	3	1E-03
1.33	4	3E-05
1.67	5	3E-07
2	6	1E-09

The "6 Sigma" problem

The 6 σ problem: Mean Shifts

Capability from the Quality Loss Function

Given L(x) and p(x) what is $E\{L(x)\}$?

Expected Quality Loss

$$E\{L(x)\} = E[k(x - x^*)^2]$$

$$= k[E(x^2) - 2E(xx^*) + E(x^{*2})]$$

$$= k\sigma_x^2 + k(\mu_x - x^*)^2$$

Penalizes Variation

Penalizes Deviation

Process Capability

- The reality (the process statistics)
- The requirements (the design specs)
- Cp a measure of variance vs. tolerance
- Cpk a measure of variance from target
- Expected Loss an overall measure of goodness

Xbar Chart Recap

- xbar S (or R) charts
 - plot of sequential sample statistics
 - compare to assumptions
 - normal
 - stationary
- Interpretation
 - hypothesis tests on μ and σ
 - confidence intervals
 - "randomness"
- Application
 - Real-time decision making

Real-Time

Beyond Xbar

Good Points

- Simple and "transparent"
- Enforces Assumptions
 - Normality (via Central Limit)
 - Independent (via long sampling times)

Limitations

- n>1 to get Xbar and S
- ARL is typically large
 - Not very sensitive to small changes
- Slow time response

Beyond Xbar

- What if n=1?
 - Have a Lot of Data
 - Want Fast Response to Changes
- How to Compute Control Chart Statistics?
 - Running Chart and Running Variance?
 - Running Average and Running Variance?
 - Running Average with Forgetting Factor
- How to Increase Sensitivity to Small, Persistent Mean Shift?
 - Integrate the Error

Chart Design: n=1 Designs - Running Averages

- Sensitivity: Ability to detect small changes (e.g. mean shifts)
- Time Response: Ability to Catch Changes Quickly
- Noise Rejection?: Higher Variance

Xbar "Filtering"

Filtering

- Reduced Peaks
- Hides intermediate data
- Reduces the "frequency content" of the output

Independence and Correlation

- Independence: Current output does not depend on prior
- Correlation: Measure of Independence
 - e.g. auto correlation function

$$R_{xx}(\tau) = E[x(t)x(t+\tau)]$$

Correlation

$$R_{xx}(\tau) = E[x(t)x(t+\tau)]$$

For a linear 1st order system

For an uncorrelated

Sampling: Frequency and Distribution of Samples

Correlation and Sampling

 Taking samples beyond correlation time guarantees independence

Sampling and Averaging

- Sampling Frequency Affects
 - Time Response
 - Correlation
- Averaging
 - Filters Data
 - Slows Response

Alternative Charts: Running Averages

- More averages/Data
- Can use run data alone and average for S only
- Can use to improve resolution of mean shift

n measurements at sample *j*

$$\begin{cases}
\overline{x}_{Rj} = \frac{1}{n} \sum_{i=j}^{j+n} x_i & \text{Running Average} \\
S_{Rj}^2 = \frac{1}{n-1} \sum_{i=j}^{j+n} (x_i - \overline{x}_{Rj})^2 \text{Running Variance}
\end{cases}$$

Specific Case: Weighted Averages

$$y_j = a_1 x_{j-1} + a_2 x_{j-2} + a_3 x_{j-3} + \dots$$

- How should we weight measurements??
 - All equally? (as with Running Average)
 - Based on how recent?
 - e.g. Most recent are more relevant than less recent?

Consider an Exponential Weighted Average

Exponentially Weighted Moving Average: (EWMA)

$$A_i = rx_i + (1 - r)A_{i-1}$$

Recursive EWMA

$$\sigma_A = \sqrt{\left(\frac{\sigma_x^2}{n}\right) \left(\frac{r}{2-r}\right) \left[1 - (1-r)^{2t}\right]}$$
 time

$$UCL, LCL = \overline{x} \pm 3\sigma_A$$

$$\sigma_A = \sqrt{\frac{{\sigma_x}^2}{n}} \left(\frac{r}{2-r}\right)$$

for large t

Effect of r on σ multiplier

SO WHAT?

The variance will be less than with xbar,

$$\sigma_A = \frac{\sigma_x}{\sqrt{n}} \sqrt{\left(\frac{r}{2-r}\right)} = \sigma_{\overline{x}} \sqrt{\left(\frac{r}{2-r}\right)}$$

- n=1 case is valid
- If r=1 we have "unfiltered" data
 - Run data stays run data
 - Sequential averages remain
- If r<<1 we get long weighting and long delays
 - "Stronger" filter; longer response time

EWMA vs. Xbar

Mean Shift Sensitivity EWMA and Xbar comparison

Effect of r

Small Mean Shifts

• What if $\Delta \mu_X$ is small wrt σ_X ?

But it is "persistent"

- How could we detect?
 - ARL for xbar would be too large

Another Approach: Cumulative Sums

- Add up deviations from mean
 - A Discrete Time Integrator

$$C_j = \sum_{i=1}^j (x_i - \overline{x})$$

- Since $E\{x-\mu\}=0$ this sum should stay near zero
- Any bias in x will show as a trend

Mean Shift Sensitivity: CUSUM

Control Limits for CUSUM

- Significance of Slope Changes?
 - Detecting Mean Shifts
- Use of v-mask
 - Slope Test with Deadband

Upper decision line

Lower decision line

$$d = \frac{2}{\delta} \ln \left(\frac{1 - \beta}{\alpha} \right)$$

$$\delta = \frac{\Delta \bar{x}}{\sigma_{\bar{x}}}$$

$$\theta = \tan^{-1} \left(\frac{\Delta \overline{x}}{2k} \right)$$

where

k = horizontal scale
factor for plot

Use of Mask

An Alternative

Define the Normalized Statistic

$$Z_i = \frac{X_i - \mu_x}{\sigma_x}$$

And the CUSUM statistic

Which has an expected mean of 0 and variance of 1

$$S_i = \frac{\sum_{i=1}^t Z_i}{\sqrt{t}}$$

Which has an expected mean of 0 and variance of 1

Chart with Centerline =0 and Limits = ±3

Example for Mean Shift = 1σ

Tabular CUSUM

Create Threshold Variables:

$$C_i^+ = \max[0,x_i-(\mu_0+K)+C_{i-1}^+] \text{ Accumulates}$$

$$C_i^- = \max[0,(\mu_0-K)-x_i+C_{i-1}^-] \text{ from the}$$
 mean

K= threshold or slack value for accumulation

$$\frac{K}{\text{typical}} = \frac{\Delta \mu}{2}$$
 $\Delta \mu = \text{mean shift to detect}$

H: alarm level (typically 5σ)

Threshold Plot

Alternative Charts Summary

- Noisy Data Need Some Filtering
- Sampling Strategy Can Guarantee Independence
- Linear Discrete Filters have Been Proposed
 - EWMA
 - Running Integrator
- Choice Depends on Nature of Process

Summary of SPC

- Consider Process a Random Process
 - Can never predict precise value
- Model with P(x) or p(x)
 - Assume p(x,t) = p(x)
- Shewhart Hypothesis
 - In-control = purely random output
 - Normal, independent stationary
 - "The best you can do!"
 - Not in-control
 - Non-random behavior
 - Source can be found and eliminated

The SPC Hypothesis

