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Agenda

• Control Chart Review
– hypothesis tests: α, β and n
– control charts: α, β, n, and average run length (ARL)

• Process Capability

• Advanced Control Chart Concepts
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• How often will the data exceed the ±3σ limits 
if Δμx = 0?

Prob(x > μ x + 3σ x ) + Prob(x < μ x − 3σ x )
= 3 / 1000
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• Consider a real shift of Δμx:

• How many samples before we can expect to 
detect the shift on the xbar chart?
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• How often will the data exceed the ±3σ limits 
if Δμx = +1σ?

pe
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Prob(x > μ x + 2σ x ) + Prob(x < μ x − 4σ x )
= 0.023 + 0.001 = 24 / 1000
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Definition

• Average Run Length (arl): Number of runs (or 
samples) before we can expect a limit to be 
exceeded = 1/pe

– for Δμ = 0      arl = 3/1000   = 333 samples
– for Δμ = 1σ arl = 24/1000 = 42   samples

Even with a mean shift as large as 1σ, it 
could take 42 samples before we know it!!!
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• Assume the same Δμ = 1σ
– Note that Δμ is an absolute value

• If we increase n, the Variance of xbar 
decreases:

• So our ± 3σ limits move closer together

σx =
σ x

n

Effect of Sample Size n on ARL
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Another Use of the
Statistical Process Model: 

The Manufacturing -Design Interface

• We now have an empirical model of the 
process
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Process Capability

• Assume Process is In-control
• Described fully by xbar and s
• Compare to Design Specifications

– Tolerances
– Quality Loss
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• Tolerances: Upper and Lower Limits

Characteristic
Dimension

Target
x*

Upper 
Specification 
Limit

USL

Lower 
Specification 
Limit

LSL

Design Specifications
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• Quality Loss: Penalty for Any Deviation from 
Target

QLF = L*(x-x*)2

Design Specifications

x*=target

How to How to 
Calibrate?Calibrate?
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• Define Process using a Normal Distribution
• Superimpose x*, LSL and USL
• Evaluate Expected Performance

Use of Tolerances: Process Capability
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Process Capability

• Definitions

• Compares ranges only
• No effect of a mean shift

Cp =
(USL − LSL)

6σ
=

tolerance range
99.97% confidence range
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= Minimum of the normalized deviation from 
the mean

• Compares effect of offsets

Cpk = min
(USL − μ )

3σ
,
(LSL − μ)

3σ
⎛ 
⎝ 

⎞ 
⎠ 

Process Capability: Cpk
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Cp = 1; Cpk = 1
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Cp = 1; Cpk = 0
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Cp = 2; Cpk = 1
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Cp = 2; Cpk = 2
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Effect of Changes

• In Design Specs
• In Process Mean
• In Process Variance

• What are good values of Cp and Cpk?
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Cpk Table  

Cpk z P<LS  or 
P>USL

1 3 1E-03

1.33 4 3E-05

1.67 5 3E-07

2 6 1E-09
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The “6 Sigma” problem

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-4 -3 -2 -1 0 1 2 3 4

+3σ∗−3σ∗ USLLSL

6σ

P(x > 6σ) = 18.8x10-10 Cp=2

Cpk=2



23Manufacturing

The 6 σ problem: Mean Shifts 
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QLF = L(x) =k*(x-x*)2

Capability from the Quality Loss Function

Given L(x) and p(x) what is E{L(x)}?
x*
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Expected Quality Loss

E{L(x)} = E k(x − x*) 2[ ]
= k E(x2 ) − 2E(xx*) + E(x *2 )[ ]
= kσ x

2 + k(μx − x*) 2

Penalizes 
Variation

Penalizes 
Deviation
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Process Capability

• The reality  (the process statistics)
• The requirements (the design specs)
• Cp - a measure of variance vs. tolerance
• Cpk - a measure of variance from target
• Expected Loss - an overall measure of 

goodness
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Xbar Chart Recap
• xbar - S (or R) charts

– plot of sequential sample statistics
– compare to assumptions

• normal
• stationary

• Interpretation
– hypothesis tests on μ and σ
– confidence intervals
– “randomness”

• Application
– Real-time decision making
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Beyond Xbar
• Good Points

– Simple and “transparent”
– Enforces Assumptions

• Normality (via Central Limit)
• Independent (via long sampling times)

• Limitations
– n>1 to get Xbar and S
– ARL is typically large

• Not very sensitive to small changes
– Slow time response
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Beyond Xbar
• What if n=1?

– Have a Lot of Data
– Want Fast Response to Changes

• How to Compute Control Chart Statistics?
– Running Chart and Running Variance?
– Running Average and Running Variance?
– Running Average with Forgetting Factor

• How to Increase Sensitivity to Small, Persistent Mean 
Shift?
– Integrate the Error
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Chart Design:
n=1 Designs - Running Averages

• Sensitivity: Ability to detect small changes 
(e.g. mean shifts)

• Time Response: Ability to Catch Changes 
Quickly

• Noise Rejection?: Higher Variance
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Xbar “Filtering”
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Filtering

• Reduced Peaks
• Hides intermediate data
• Reduces the “frequency content” of the output
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Independence  and Correlation

• Independence: Current output does not 
depend on prior

• Correlation: Measure of Independence
– e.g. auto correlation function

Rxx (τ) = E[x( t)x(t + τ)]
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Correlation

Rxx (τ) = E[x( t)x(t + τ)]

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4
Tmin Tmax

For a linear 1st order system

τ~ 1 sec:

For an uncorrelated

process



36Manufacturing

Sampling: Frequency and 
Distribution of Samples
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Correlation and Sampling

Correlation 
Time  (e.g.)

Correlated 
Samples

Uncorrelated 
Samples

• Taking samples beyond correlation 
time guarantees independence
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Sampling and Averaging

• Sampling Frequency Affects
– Time Response
– Correlation

• Averaging
– Filters Data
– Slows Response
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n measurements
at sample j

x R j =
1
n

xi
i = j

j + n

∑

SR j
2 =

1
n − 1

(xi
i = j

j +n

∑ − x Rj )
2

Running Average

Running Variance

• More averages/Data 
• Can use run data alone and   
average for S only
• Can use to improve resolution   
of mean shift

Alternative Charts: Running Averages
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yj = a1x j −1 + a2x j −2 + a3 xj −3 + ...

Specific Case: Weighted Averages

• How should we weight measurements??
– All equally? (as with Running Average)

– Based on how recent?
• e.g. Most recent are more relevant than less 

recent?
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              Wt − i = r (1− r )i
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Exponentially Weighted Moving Average: (EWMA)

Ai = rxi + (1 − r)Ai −1 Recursive EWMA

σ A =
σ x

2

n
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

r
2 − r

⎛ 
⎝ 

⎞ 
⎠ 1 − 1− r( )2 t[ ]

UCL, LCL = x ± 3σ A

time

σA =
σ x

2

n
r

2 − r
⎛ 
⎝ 

⎞ 
⎠ 

for large t
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Effect of r on σ multiplier

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

plot of (r/(2-r)) vs. r

wider control limits

r



44Manufacturing

SO WHAT?
• The variance will be less than with xbar, 

• n=1 case is valid
• If r=1 we have “unfiltered” data

– Run data stays run data
– Sequential averages remain 

• If r<<1 we get long weighting and long delays
– “Stronger” filter; longer response time

  

σA =
σ x

n
r

2 − r
⎛ 
⎝ 

⎞ 
⎠     = σ x   

r
2 − r

⎛ 
⎝ 

⎞ 
⎠ 
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EWMA vs. Xbar

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

xbar
EWMA
UCL EWMA
LCL EWMA
grand mean
UCL
LCL

r=0.3

Δμ = 0.5 σ



46Manufacturing

Mean Shift Sensitivity
EWMA and Xbar comparison
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Effect of r
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Small Mean Shifts

• What if Δμx is small wrt σx ?

• But it is “persistent”

• How could we detect?
– ARL for xbar would be too large
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Another Approach: Cumulative Sums

• Add up deviations from mean
– A Discrete Time Integrator

• Since E{x-μ}=0   this sum should stay near zero
• Any bias in x will show as a trend

C j = (xi
i=1

j

∑ − x)
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Mean Shift Sensitivity: CUSUM
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Control Limits for CUSUM

• Significance of Slope Changes?
– Detecting Mean Shifts

• Use of v-mask
– Slope Test with Deadband

d

θ

Upper decision line

Lower decision line

d =
2
δ

ln
1 − β

α
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

              δ = Δx 
σ x 

θ = tan−1 Δx
2k

⎛
⎝⎜

⎞
⎠⎟

where
 k = horizontal scale 
       factor for plot
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Use of Mask

-1

0

1

2

3

4

5

6

7

8
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

θ=tan-1(Δμ/2k)
k=4:1; Δμ=0.25 (1σ)
tan(θ) = 0.5 as plotted



53Manufacturing

An Alternative

• Define the Normalized Statistic

• And the CUSUM statistic

Zi =
Xi − μ x

σ x

Si =
Zi

i =1

t

∑
t

Which has an 
expected mean of 
0 and variance of 1

Which has an 
expected mean of 
0 and variance of 1

Chart with Centerline =0 and Limits = ±3



54Manufacturing

Example for Mean Shift = 1σ
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Tabular CUSUM

• Create Threshold Variables: 

Ci
+ = max[0, xi − (μ0 + K ) + Ci −1

+ ]
Ci

− = max[0,(μ0 − K ) − xi + Ci −1
− ]

K= threshold or slack value for 
accumulation

K =
Δμ
2

Δμ = mean shift to detect

H :  alarm level (typically 5σ)

Accumulates 
deviations 
from the 
mean

typical
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Threshold Plot
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Alternative Charts Summary

• Noisy Data Need Some Filtering
• Sampling Strategy Can Guarantee 

Independence
• Linear Discrete Filters have Been Proposed

– EWMA
– Running Integrator

• Choice Depends on Nature of Process 
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Summary of SPC 
• Consider Process a Random Process

– Can never predict precise value
• Model with P(x) or p(x)

– Assume p(x,t) = p(x)
• Shewhart Hypothesis

– In-control = purely random output
• Normal, independent stationary
• “The best you can do!”

– Not in-control
• Non-random behavior
• Source can be found and eliminated
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The SPC Hypothesis
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