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The  Normal Distribution
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Properties of the Normal pdf

• Symmetric about mean
• Only two parameters:

μ and σ

• Mean (μ) and Variance ( σ2 ) have well known 
“estimators” (average and sample variance)
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Testing the Model: 
e.g. Is the Process “Normal” ?

• Is the underlying distribution really normal?
– Look at histogram
– Look at curve fit to histogram
– Look at % of data in 1, 2 and 3σ bands

• Confidence Intervals
– Look at “kurtosis”

• Measure of deviation from normal
– Probability (or qq) plots (see Mont. 3-3.7 or MATLAB 

stats toolbox)
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Kurtosis: Deviation from Normal
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For sampled data:

k = 0 - normal
k > 0 - more “peaked”
k < 0 - more “flat”
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Kurtosis for Some Common Distributions

D: Laplace (k = 3)
L: logistic (k = 1.2)
N: normal (k = 0)
U: uniform (k = -1.2)

Source: Wikimedia Commons, http://commons.wikimedia.org
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• Plot
– normalized (mean 

centered and 
scaled to s)

vs. 
– theoretical position 

of unit normal 
distribution for 
ordered data

• Normal distribution: 
data should fall along 
line

Quantile-Quantile (qq) Plots

Source: Wikimedia Commons, http://commons.wikimedia.org
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Guaranteeing “Normality”
The Central Limit Theorem

– If x1, x2 ,x3 ...xN … are N independent observations of 
a random variable with “moments” μx and σ2

x,

– The distribution of the sum of all the samples will 
tend toward normal.
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Example: Uniformly Distributed Data
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Sampling: Using Measurements (Data) 
to Model the Random Process

• In general p(x) is unknown
• Data can suggest form of p(x)

– e.g.. uniform, normal, weibull, etc.
• Data can be used to estimate parameters of distributions

– e.g.  μ and σ for normal distribution:   p(x) = N(μ ,σ2)

• How to estimate
– Sample Statistics

• Uncertainty in estimates
– Sample Statistic pdf’s

p(x) =
1

σ 2π
e

− 1
2

x − μ
σ

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2



11Manufacturing

Sample Statistics

Average or sample mean

Sample variance

Sample standard deviation
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Sample Mean Uncertainty 

• If all xi come from a distribution with μx and σ2
x, and 

we divide the sum by n:
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Manufacturing as Random Processes 

• All physical processes have a degree of 
natural randomness

• We can model this behavior using probability 
distribution functions

• We can calibrate and evaluate the quality of 
this model from measurement data
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Formal Use of Statistical Models

• Discrete Variable Distributions and Uses
– Attribute Modeling

• Sampling: Key distributions arising in sampling
• Chi-square, t, and F distributions

• Estimation: 
– Reasoning about the population based on a sample

• Some basic confidence intervals
• Estimate of mean with variance known
• Estimate of mean with variance not known
• Estimate of variance

• Hypothesis tests
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Discrete Distribution: Bernoulli

Bernoulli trial: an experiment with two outcomes

Probability density function (pdf):
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Discrete Distribution: Binomial

Repeated random Bernoulli trials

• n is the number of trials
• p is the probability of “success” on any one trial
• x is the number of successes in n trials
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Binomial Distribution
Binomial Distribution
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Discrete Distribution: Poisson

• Poisson is a good approximation to Binomial when n is large 
and p is small (< 0.1)

Example applications:
# misprints on page(s) of a book
# defects on a wafer

Mean:
Variance:
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Poisson Distribution
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Back to Continuous Distributions

• Uniform Distribution
• Normal Distribution

– Unit (Standard) Normal Distribution
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Continuous Distribution: Uniform
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Standard Questions For a Known cdf or pdf

xa

1

b

xa b
• Probability x sits within 

• Probability x less than or
equal to some value

some range
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Continuous Distribution: Normal or Gaussian
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Continuous Distribution: Unit Normal

• Normalization 

cdf

Mean
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pdf
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Using the Unit Normal pdf and cdf

• We often want to talk 
about “percentage points”
of the distribution – portion 
in the tails
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Use of the pdf:
Location of Data

• How likely are certain values of the random 
variable?

• For a “Standard Normal” Distribution:

z = (x − μ)
σ

N(0,1)
μ=0

σ=1
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z = 2   ⇒    x = 2σ
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Location of Data

P(-1≤ z ≤ 1) = P(z ≤1) - P(z ≤-1) = Φ(1) - Φ(-1) 
(+ 1σ) = 0.841 - (1-0.841) = 0.682

P(-2≤ z ≤ 2) = P(z ≤2) - P(z ≤-2) = 0.977 - (1-0.977) = 0.954
(+ 2σ)

P(-3≤ z ≤ 3) = P(z ≤3) - P(z ≤-3) = 0.998 - (1-0.998) = 0.997
(+ 3σ)

Φ(z) tabulated  (e.g. p. 752 of Montgomery)
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Statistics

The field of statistics is about reasoning in the 
face of uncertainty, based on evidence from 

observed data

• Beliefs:
– Probability distribution or probabilistic model form
– Distribution/model parameters

• Evidence:
– Finite set of observations or data drawn from a 

population (experimental measurements or 
observations)

• Models:
– Seek to explain data wrt a model of their probability
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Sampling to Determine Parameters of the 
Parent Probability Distribution

• Assume Process Under Study has a Parent Distribution p(x)
• Take “n” Samples From the Process Output (xi) 

• Look at Sample Statistics (e.g. sample mean and sample 
variance)

• Relationship to Parent
• Both are Random Variables
• Both Have Their Own Probability Distributions

• Inferences about the process (the parent distribution) via 
Inferences about the derived sampling distribution
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Moments of the Population vs. Sample Statistics

• Mean

• Variance

• Standard
Deviation

• Covariance

• Correlation
Coefficient

Underlying model or 
Population Probability

Sample Statistics
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Sampling and Estimation

• Sampling: act of making observations from 
populations

• Random sampling: when each observation is 
identically and independently distributed (IID)

• Statistic: a function of sample data; a value that can 
be computed from data (contains no unknowns) 
– Average, median, standard deviation
– Statistics are by definition also random variables
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Population vs. Sampling Distribution

Population
(“true”)probability density function)

Sample Mean
(statistic)

n = 20

n = 10

n = 2

Sample Mean Distribution
(sampling distribution)

n = 1
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Sampling and Estimation, cont.
• Sampling
• Random sampling
• Statistic
• A statistic is a random variable, which itself has a 

sampling (probability) distribution
– I.e., if we take multiple random samples, the value for the 

statistic will be different for each set of samples, but will be
governed by the same sampling distribution

• If we know the appropriate sampling distribution, we can 
reason about the underlying population based on the 
observed value of a statistic
– E.g. we calculate a sample mean from a random sample; in 

what range do we think the actual (population) mean sits?
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Sampling and Estimation – An Example

• Suppose we know that the thickness of 
a part is normally distributed with std. 
dev. of 10:

• We sample n = 50 random parts and 
compute the mean part thickness:

• First question: What is distribution of 
the mean of T = 

• Second question: can we use 
knowledge of      distribution to reason 
about the actual (population) mean μ
given observed (sample) mean?
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Estimation and Confidence Intervals
• Point Estimation: 

– Find best values for parameters of a distribution
– Should be

• Unbiased: expected value of estimate should be true value
• Minimum variance: should be estimator with smallest variance

• Interval Estimation: 
– Give bounds that contain actual value with a given 

probability
– Must know sampling distribution!
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Confidence Intervals: Variance Known

• We know σ, e.g. from historical data
• Estimate mean in some interval to (1-α)100% confidence

0.1
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Remember the unit normal 
percentage points

Apply to the sampling 
distribution for the sample 
mean
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95% confidence interval, α = 0.05

Example, Cont’d

• Second question: can we use knowledge of      distribution to 
reason about the actual (population) mean μ given observed 
(sample) mean?

n = 50

~95% of distribution
lies within +/- 2σ of mean
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Summary
• Process as Random Variable

– Histograms to pdf’s
• Different Distributions for Different Processes

– Discrete or Binary  (e.g. Defects)
– Continuous (e.g. Dimensional Variation)

• Parent Distributions and Sampling
– Estimating the Parent from Data

• Use of Distributions to establish “Confidence” on 
Parameter Estimates
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