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Note: Reading Assignment

• May & Spanos
– Read Chapter 4

• Montgomery
– Skim/consult Chapters 2 & 3 if need additional 

explanations or examples beyond May & Spanos
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Turning Process
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CNC Turning
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CNC Data
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Brake Bending of Sheet
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Bending Process

Springback
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Angle 
changes 
with depth
ΔY ⇒ Δu

• Clear Input-Output Effects (Deterministic)
• Also Randomness as well

Observations from  Bending Process
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Observations from Injection Molding

Run Chart for Injection Molded Part
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Observations from Data

• Clearly some measurement “noise”?
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Observations from Data

• Systematic/traceable “operator error”
Sheet Shearing
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Inputs

A Random Process + A Deterministic Process

How Model to Distinguish these Effects?

Process

Disturbances 
(Reducible)

Irreducible 
Disturbances

Outputs 
+ 

"Noise"
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• Consider the Output-only,  “Black Box” view of the 
Run Chart

• How do we characterize the process?
– Using Y(t) only

• WHY do we characterize the process
– Using Y(t) only?

Process Y(t)

Random Processes
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The Why

• Did output really change?
• Did the input cause the change?
• If not, why did the output vary?
• How confident are we of these answers?

• Can we model the randomness?

Process
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Background Needed
• Theory of Random Processes and Random 

Variables
• Use of Sample Statistics Based on 

Measurements
– SPC basis
– DOE: use of experimental I/O data
– Feedback control with random disturbances
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How to Describe Randomness?

• Look at a Frequency Histogram of the Data
• Estimates likelihood of certain ranges 

occurring:

– Pr(y1 < Y <y2)

– “Probability that a random variable Y falls 
between the limits y1 and y2”
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Example: Thermoforming Histogram (2000 data)
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How to Describe Continuous Randomness

• Process outputs Y are continuous variables
• The Probability of Y(t) taking on any specific value for a 

continuum
Prob(Y(t) = y*) = 0

• Must use instead a Cumulative Probability Function
Pr(Y(t)<y*)

– Look at Cumulative Frequency
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Cumulative Frequency
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• Probability Function: (P(x))

• Probability Density Function pdf(x) =  dP/dx
x

P

x

p(x)

Continuous Equivalents
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Process Outputs as a Random Variable

• The Histogram suggests a pdf
– Parent or underlying behavior “sampled” by the 

process
• Standard Forms (There are Many)

– e.g. The Uniform and Normal pdf’s
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Analysis of Histograms

• Is there a consistent pattern?
• Is an underlying “parent” distribution suggested?
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Histogram for CNC Turning
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Consider: No Intentional Changes (Δu = 0)

• Shearing during shift 1(‘02) , aluminum only
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Consider: No Effective Changes (∂Y/∂u= 0)
• Injection Molding Entire MIT Run (2002)
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Injection Molding (S’2003)
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Conclusion?

• When there are no input effect (no Δu or ∂Y/∂u) a 
consistent histogram pattern can emerge

• How do we use knowledge of this pattern?
– Predict behavior
– Set limits on “normal” behavior

• Define analytical probability density functions
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Underlying or “Parent” Probability
• A model of the “true”, continuous behavior of the 

random process
• Can be thought of as a continuous random variable 

obeying a set of rules (the probability function)
• We can only glimpse into these rules by sampling the 

random variable (i.e. the process output)
• Underlying process can have

– Continuous values (e.g. geometry)
– Discrete values (e.g. defect occurrence)
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Continuous Probability Functions

• Recall Probability Function (Cumulative)
P(x) = Prob(Y(t)<x)

• Define pdf =  p(x) = dP/dx

Thus :
P(x) = pdf (x)dx

−∞

x

∫

x

p(x)
x

P
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Use of the pdf : Expectation

E{x(t)} = expected value of x(t)

E{x(t)} =  x(t) pdf (x,t )dx
-∞

∞

∫
μ(t) =  E{x(t)}   mean value of x

Note that pdf and μ (or any other expected value)
can be functions of time. 

In general, they may be non-stationary.
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pdf(x,t) = pdf(x) = p(x)   : stationary pdf

• For a stationary process μx is a constant

Stationary Processes

E{x} = x p(x)dx
−∞

∞

∫ = μx

μx :  theoretical or " true"  mean
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• For a stationary process σx is a constant

Stationary Processes

σ x
2 = E{x 2} − μx

2

E{(x − μx )2} = (x − μx )2 p(x)dx
−∞

∞

∫ = σ x
2

= "true" variance

=  mean square - square of mean
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The Uniform Distribution

r x

p(x)

1/r

p(x) =
1
r

   ⇒ x1 < x < x2

p(x) = 0   ⇒ x < x1    x > x2

x1 x2
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The  Normal Distribution

p(x) =
1

σ 2π
e

− 1
2

x − μ
σ
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⎠ ⎟ 

2

z =
x −

z

μ
σ
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Properties of the Normal pdf

• Symmetric about mean
• Only two parameters:

μ and σ

• Superposition Applies:
– sum of normal random variables has a normal 

distribution

p(x) =
1

σ 2π
e

− 1
2

x − μ
σ

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2
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Superposition of Random Variables

If we define a variable
y = c1x1 + c2x2 + c3x3 + c4x4 +  ...

• ci are constants 
• xi are independent random variables

μy = c1μ1 + c2μ2 + c3μ3 + c4μ4 +  ...

σy
2 = c1

2σι
2 + c2

2σ2
2 + c3

2σ3
2 + c4

2σ4
2

From expectation operation, for any pdf. 
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Use of the PDF: Confidence Intervals

• How likely are certain values of the random 
variable?

• For a “Standard Normal” Distribution:

z = (x − μ)
σ

N(0,1)
μ = 0

σ =1

z = 1   ⇒   x = 1σ
z = 2   ⇒    x = 2σ
z = 3   ⇒   x = 3σ

0
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0.4
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Confidence Intervals

P(-1≤ z ≤ 1) = P(z ≤1) - P(z ≤-1) = 0.841 - (1-0.841) = 0.682
(+ 1σ)

P(-2≤ z ≤ 2) = P(z ≤2) - P(z ≤-2) = 0.977 - (1-0.977) = 0.954
(+ 2σ)

P(-3≤ z ≤ 3) = P(z ≤3) - P(z ≤-3) = 0.998 - (1-0.998) = 0.997
(+ 3σ)

P(z) tabulated  (e.g. p. 752 of Montgomery)
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Is the Process “Normal” ?

• Is the underlying distribution really normal?
– Look at histogram
– Look at curve fit to histogram
– Look at % of data in 1, 2 and 3 σ bands

• Confidence Intervals
– Probability (or qq) plots  (see Mont. 3-3.7)
– Look at “kurtosis”

• Measure of deviation from normal
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Kurtosis: Deviation from Normal

k = E(x − μ x )4

σ 4

k =
n(n + 1)

(n − 1)(n − 2)(n − 3)
xi − x

s
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ∑

4⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

−
3(n − 1)2

(n − 2)(n − 3)

Or for sampled data:

k=1 - normal
k>1 more “peaked”
k<1 more “flat”
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The Central Limit Theorem

– If x1, x2 ,x3 ...xN … are N independent observations of 
a random variable with “moments” μx and σ2

x,

– The distribution of the sum of all the samples will 
tend toward normal.
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Example: Uniformly Distributed Data

Sum of 100 sets of 
1000 points each
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Sampling: Using Measurements (Data) 
to Model the Random Process

• In general p(x) is unknown
• Data can suggest form of p(x)

– e.g.. uniform, normal, weibull, etc.
• Data can be used to estimate parameters of distributions

– e.g.  μ and σ for normal distribution - p(x) = p(x, μ ,σ)

• How to Estimate
– Sample Statistics

• Uncertainty in Estimates
– Sample Statistic pdf’s

p(x) =
1

σ 2π
e

− 1
2

x − μ
σ

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2
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Sample Statistics

x =
1
n

x( j)
j =1

n

∑ :   Average or Sample Mean

S2 =
1

n − 1

x( j) = samples of x(t ) taken n  times

(x( j)
j =1

n

∑ − x )2 :   Sample Variance

S =
1

n − 1
(x( j)

j =1

n

∑ − x )2 :   Sample Std.Dev.
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Sample Mean Uncertainty 

• If all xi come from a distribution with μx and σ2
x, and 

we divide the sum by n:

x =
1
n

xi
i =1

n

∑

μx = μx σ x
2 =

1
n

σ x
2   or  σ x =

1
n

σ x

x = c1x1 + c2 x2 + c3x3 + K cn xn

                 ci =
1
n

Then: and
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Conclusions

• All Physical Processes Have a Degree of 
Natural Randomness

• We can Model this Behavior using Probability 
Distribution Functions

• We can Calibrate and Evaluate the Quality of 
this Model from Measurement Data
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