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Agenda

• Process Definitions
– Geometry Change Causality

• Taxonomy for Control
– Classification of Change Methods

• “Mechanical” Examples
– Turning
– Bending
– Molding

• Origins of Variation
– States and Properties
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Process Model for Control

Equipment Material
E(t )“controls” Geometry 

&
Properties

Y = Φ(α )
α ≡ process parameters

What are the α’s?

Process Y ≡ Process Outputs
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Back to the Process: What 
Causes the Output Change?

• A Directed Energy Exchange with the 
Equipment

Equipment Material
E(t ) Geometry 

&
Properties

E(t ) →

mechanical
electrical
thermal
chemical

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
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Modes of Geometry Change?
• Removal of Material
• Plastic Deformation of Material
• Addition of Material
• Formation of Material from a Gas or Liquid

• Any others???
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–– location of max. shear stress in turninglocation of max. shear stress in turning

What Controls the Geometry Change?

Location and Intensity of Energy ExchangeLocation and Intensity of Energy Exchange
•• ExamplesExamples:
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What Controls the Geometry Change?

Location and Intensity of Energy ExchangeLocation and Intensity of Energy Exchange
•• ExamplesExamples:

–– heat transfer at the mold surface in injection moldingheat transfer at the mold surface in injection molding
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– location of laser 
beam in laser cutting

Location and Intensity of Energy ExchangeLocation and Intensity of Energy Exchange
•• ExamplesExamples:

Control of Geometry Change?
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–– reaction rate reaction rate -- time product on substrate surface  in LPCVDtime product on substrate surface  in LPCVD

Location and Intensity of Energy ExchangeLocation and Intensity of Energy Exchange

Control of Geometry Change?
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Control of Geometry Change?

Location and Intensity of Energy ExchangeLocation and Intensity of Energy Exchange
•• displacement field in sheet forming :
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Two Extremes of Interactions 

Area of E(t) << Total Area: Serial Process

Area of E(t) ~ Total Area: Parallel Process

v(t)

y(t)
K(s)
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Two Extremes of Interactions 

• Concentrated, “Lumped” Energy Port
– Small Area Wrt Total Part Geometry

• Distributed Energy Port
– Area ~ Total Part Geometry



2.830J/6.780J Lecture #3   © David E. Hardt 13Manufacturing

What Determines Part 
Geometry Change?

• For Lumped case:
– time - trajectory of the port location

• e.g. tool paths

• For Distributed Case: 
– Shape of the energy distribution

• patterns
• molds
• masks
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Examples
• Serial (Lumped) Processes

– Machining - Tool Path
– Laser Cutting - Beam path
– Bending - Tool Depth
– Stereolithography - Beam Path
– Three D Printing - Binder Path
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Examples
• Parallel (Distributed) Processes

– Draw Forming - Die Shapes
– Injection Molding - Mold Shape
– Chemical Etching - Mask Shape
– CMP - Tool Shape
– Plating - Substrate Shape
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Toward a Process Taxonomy
• Classify by Change Mode

– Why?
• Classify by Interaction area (serial/parallel)

– So what?
• Classify by Energy Domain

– Who cares??

Sensitivity, resolution

Flexibility, controllability, rate

Rate, resolution
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Process Taxonomy for Control
Transformation               REMOVAL 

Mode                SERIAL              PARALLEL
Energy Source Mechanical Thermal Chemical Electrical Mechanical Thermal Chemical Electrical

Cutting Laser  Cutting WIRE EDM Die Stamping ECM EDM
Grinding "Flame" Cutting CMP Photolithography
Broaching Plasma Cutting Chem Milling
Polishing
Water Jet

Transformation       ADDITION/JOINING
Mode                SERIAL              PARALLEL

Energy Source Mechanical Thermal Chemical Electrical Mechanical Thermal Chemical Electrical
Ultrasonic Laser E-Beam Welding HIP Sintering LPCVD
Welding Sintering Arc Welding Inertia Bonding Plating
3D Printing Resist. Welding Phys. Depos.

Transformation           FORMATION 
Mode                SERIAL              PARALLEL

Energy Source Mechanical Thermal Chemical Electrical Mechanical Thermal Chemical Electrical
Plasma Spray Stereolithography Casting Diffusion
DBM Molding Bonding

Transformation          DEFORMATION 
Mode                SERIAL              PARALLEL

Energy Source Mechanical Thermal Chemical Electrical Mechanical Thermal Chemical Electrical
Bending Line Heating Drawing
Forging(open) Forging(die)
Rolling
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Process Model for Control

Equipment Material
E(t )“controls” Geometry 

&
Properties

Y = Φ(α )
α ≡ process parameters

What are the α’s?

Process Y ≡ Process Ouputs
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Process Parameters

• Equipment Energy “States”
• Equipment Constitutive “Properties”

• Material Energy “States”
• Material Constitutive ”Properties”

Equipment Material
E(t )
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Energy States

Energy Domain Energy or Power Variables

Mechanical F, v ;  P, Q or  F, d ; σ, ε

Electrical V,I

Thermal T, ds/dt (or dq/dt)

Chemical chemical potential, rate

Equipment Material
E(t )
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Properties
• Extensive: GEOMETRY
• Intensive: Constitutive Properties 

– Modulus of  Elasticity, damping, mass
– Plastic Flow Properties
– Viscosity
– Resistance, Inductance, Capacitance
– Chemical Reactivity
– Heat Transfer Coefficient
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A Model for Process Variations

• Recall:

• One or more α’s “qualify” as inputs : u

• The first order Variation ΔY gives the “Variation 
Equation”

Y = Φ(α )

Y = Φ(α ,u);         u = vector of inputs

Equipment Material
E(t )“controls” Geometry 

&
Properties
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Parallels From Lecture 2

Image removed due to copyright restrictions. Please see Fig. 
26 in Boning, D. S., et al. “A General Semiconductor 
Process Modeling Framework.” IEEE Transactions on 
Semiconductor Manufacturing 5 (November 1992): 266-280.



2.830J/6.780J Lecture #3   © David E. Hardt 24Manufacturing

The Variation Equation

Δ Y = ∂Y
∂α

Δα +
∂Y
∂u

Δ u

Disturbance
Sensitivity

Disturbances

Control 
Sensitivity or 
“Gain”

Control Inputs

Process
Input “u” Output “u”

Parameters “α”
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Simple Machining

• Process Type?

• Equipment States 
and Properties?

• Material States and 
Properties?
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Cutting Force Model
Orthogonal Cutting

Uncut Chip
Thickness
t o

Chip
Width
b

Rake
Angle α

Cutting
Speed  v

Fc=“Strength” x Area
Strength = Ultimate Tensile Strength 
(UTS)

Area ~ b to



Tool Offset

Tool Position

Sources of Variation?

v
Tool Reference 
Frame

Machine Reference 
Frame

Workpiece 
Reference 
Frame

Initial 
Geometry

Final Geometry
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Simple Machining (Orthogonal Turning
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CNC Data

0.6235

0.6237

0.6239

0.6241

0.6243

0.6245

0.6247

0.6249

0.6251

0.6253

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Outer
Middle
Inner

Operating Points:
High Feed=1
Low Feed = 2
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Average Values

y = 1E-04x2 - 9E-05x + 0.624

0.6234

0.6236

0.6238

0.624

0.6242

0.6244

0.6246

0.6248

0.625

0.6252

0.6254

0.5 1 1.5 2 2.5 3 3.5

High Feed
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y = -2E-05x2 + 0.0001x + 0.624

0.6236

0.6237

0.6238

0.6239

0.624

0.6241

0.6242

0.6243

0.6244

0.6245

0.6246

0.6247

0.5 1 1.5 2 2.5 3 3.5

Average Values

Low Feed
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Machining: Conclusions

• Geometry Transformation is (In General) 
well behaved
– Not highly sensitive to material property 

variations
– New Surface Where Tool is Located

• Dominant Sources of Variation:
– Tool Positioning errors - Equipment 

Properties and States
• Feedback control of Positions is a good idea 

-> CNC control!
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Brake Bending

M M

ε

σ

Images removed due to copyright restrictions. Please see:

http://www.falconfab.com/MVC-016F.JPG

http://www.falconfab.com/MVC-007F.JPG

http://edevice.fujitsu.com/fj/DATASHEET/epk/fpt-100p-m20.pdf

http://www.falconfab.com/MVC-016F.JPG
http://www.falconfab.com/MVC-007F.JPG
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Bending
• Process Type?

• Equipment States and Properties?

• Material States and Properties?



2.830J/6.780J Lecture #3   © David E. Hardt 36Manufacturing

Simple Model : Pure Moment Bending

Constant Radius Tool

Springback
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Simple Bending Mechanics: 
Parameter Effects

• Tool Shape (Rtool) determines the shape 
under load

• Elastic Springback determines the final 
shape

• What determines the springback?
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h

b

M

r = 1/K

y

ε=K y

M

K = curvature of the toolingK = curvature of the tooling
h = thickness of the sheeth = thickness of the sheet
εε(y) = through thickness strain(y) = through thickness strain

What is M(K) 
(or K(M)) ?

Simple Bending Model
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h

b

M

r = 1/K

y

ε=K y

M

ε(y) = Ky

M = σ(y)ybdy
−h/ 2

h / 2

∫
dAmoment arm σ(y) = ?

Simple Beam Theory

dσ
y

dA
b

h
dy
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σ

ε

E

εY

σY

M =
3
2

Elastic Perfectly Plastic Model

My 1− 1
3

Ky

K
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

KY = εY / (h / 2)

MY = EI  KY
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The M-K  Curve

M

K

EI

KY

MY

3/2 MY

Loading

EI
Unloadin
g

KtoolKpart

ΔK
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Final Shape: Springback

ΔK =
Mmax

EI
∴ Kpart = Ktool − ΔK

K = shape of tool

E= material property
I =

1
12

bh 3  cubic  dependence on thickness

Mmax = ?
Mmax = Φ (KY, EI)

Strong Dependence 
on yield properties
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Effect of Material Variations: 
Increase in Yield Stress

M

K

EI

KY

MY

Ktool

ΔK

Kpart

MY
’

ΔK
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Bending Experiments

• Bend to 2 different  depths
• Two different materials

– 0.028” Steel
– 0.032” Aluminum
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Steel vs. Aluminum

M

K

EIsteel

KtoolKpart

EIAl

E t EI

3.00E+07 0.028 54.88

1.00E+07 0.036 38.88
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Bending by Operating Point

90.00

100.00

110.00

120.00

130.00

140.00

150.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Operating Points:
Steel - Low Depth = 1
Steel - High Depth = 2
Alum - Low Depth = 3
Alum - High Depth = 4

144

109.5

137.3

99.6

~5%

~10%
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Other Possible Variations

• Yield Stress (+ 10%reported)
– Chemistry, working history

• Thickness
– Rolling mill quality
– Design vs. manufacturing specs

• Tooling Errors
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Conclusions
• Some Variations Easily Explained

– Deterministic parameter changes 
• Thickness and Material Selection   Δmp (Material Parameter)

– Intentional Input changes
• Depth changes   Δes  (Equipment state)

• Other Variations ???
– Property Variations within Material Δmp

– Machine Errors Δep and Δes  (e.g. deflection and position error)

Δ Y = ∂Y
∂α

Δα +
∂Y
∂u

Δ u
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Conclusions for 
Brake Bending

• Equipment Errors have Strong Effect on Final Shape

– Punch Penetration -> Δes  (Equipment state)

– Die Width -> Δep (Equipment Parameter)

SO WHAT? Large ∂Y/∂α
Large Δα
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Injection Molding

Reciprocating Screw

Hydraulic Unit
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Injection Molding Process

Process Type?

Equipment States and 
Properties?

Material States and 
Properties?

Image courtesy Wikimedia Commons, http://commons.wikimedia.org
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Geometry Determinants
• Mold Shape
• Material Shape Change upon 

Cooling
– Residual Stress Effect
– Thermal Expansion  or contraction

• Extent of Mold Filling
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Key Material Properties:
Flow into Mold

E

TTg Tm

Viscosity
ν(T)

P = R(ν) Q
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Effect of Temperature on Flow
Q = P/R R = resistance to flow  α ν

ν(T) = AeER(To-T)

where: 
T = temperature
R = gas constant
E = activation energy for viscosity
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Key Material Properties:
Cooling

E

TTgTm
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Packing Phase

Solidification 
of Part

Hydraulic

Cavity

Hold Pressure

Time                  

P
re

ss
ur

e
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Heat Transfer: Filling

• Tpart > Tmold therefore always cooling
• Interior hotter than surface
• If Tpart on surface < Tg flow stops

– Short Shot
• Viscosity is strong function of Temperature
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Heat Transfer in the Mold

• q = k A ∂T/∂x
– Rate decreases as ∂T/∂x decreases

• Mold heat & polymer cools

• dT/dt = α ∂T2/∂x2

– α = k / ρ Cp
• Polymers have low k and high Cp

q

q
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Process Control Issues

• Control Change in Shape upon Cooling
– Consistent Mold Filling
– Consistent Mold Pressure

• Consistent Residual Stresses
– Consistent Thermal environment

• Consistent Thermal Distortion
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Typical Equipment Control Systems

• Injection Velocity or Injection Pressure
• Nozzle Temperature
• Mold Temperature
• Barrel Heater Temperature

Equipment 
States
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Sources of Variation
• Material Properties

– Flow Properties
ν(T) relationship (especially if moist)

– Thermal properties (ditto)
– Also effects of “regrind”
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Example:  Effect of Blending

3.1300

3.1250

3.1200

3.1150

3.1100

3.1050

3.1000
67 87 101 113 134 149 167 185 200 215 239 257 284 302 317

Shot Number

Virgin 50% Regrind Virgin 100% Regrind V i

Average Part Weight

W
ei

gh
t (

g)

Figure by MIT OpenCourseWare.
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Lab Data

• Variable Hold 
Time

• Variable Injection 
Velocity
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Injection Molding Data 

2.025

2.030

2.035

2.040

2.045

2.050

2.055

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

Operating Points:
Low Hold - Low Velocity=1
Low Hold - High Velocity=2
High Hold - Low Velocity=3
High Hold - High Velocity=4
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Injection Molding NTU

40

40.1

40.2

40.3

40.4

40.5

40.6

40.7

40.8

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139

Shift Changes
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I.M. NTU (no Group 1)

40.45

40.5

40.55

40.6

40.65

40.7

40.75

40.8

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

Operating Points:
Low Hold (5 s) - Low Velocity (50 %) = 1
Low Hold (5 s) - High Velocity (75 %) = 2
High Hold (10 s) - Low Velocity (50 %) = 3
High Hold (10 s)  - High Velocity (75 %) = 4
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Sources of Variation
• Equipment Properties

– Heat Transfer Properties
– Mold Flow Passages

• Equipment States
– Barrel and Nozzle Temperatures
– Mold Temperatures
– Flow Rates
– Packing Pressure
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Conclusions

• I.M. is a Complex, Parallel Formation Process
• Strong Dependence on Material Properties

– Viscosity sensitivity 
– Heat Transfer Sensitivity

• Thermal State Must be Well Controlled
– Many opportunities on the equipment
– Material State very hard to do

• Distributed
• Interference with Process
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ΔY = ∂Y
∂α

Δα +
∂Y
∂u

Δu

Disturbances
Equipment Property Changes
Material Property Changes
Material State Uncertainty
Equipment State Uncertainty

Control Inputs:
Equipment States

Conclusions: Variation
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Process Model for Control

Equipment Material
E(t )“controls” Geometry 

&
Properties

Y = Φ(α )
α ≡ process parameters

What are the α’s?

Process Y ≡ Process Ouputs



2.830J/6.780J Lecture #3   © David E. Hardt 73Manufacturing

What are the 
Process Parameters?

• Equipment Energy “States”
• Equipment Constitutive “Properties”

• Material Energy “States”
• Material Constitutive ”Properties”
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Energy States

Energy Domain Energy or Power Variables

Mechanical F, v ;  P, Q or  F, d ; σ, ε

Electrical V,I

Thermal T, ds/dt (or dq/dt)

Chemical chemical potential, rate
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Properties
• Extensive: GEOMETRY
• Intensive: Constitutive Properties 

– Modulus of  Elasticity, damping, mass
– Plastic Flow Properties
– Viscosity
– Resistance, Inductance, Capacitance
– Chemical Reactivity
– Heat Transfer Coefficient

• Which has the highest precision?



2.830J/6.780J Lecture #3   © David E. Hardt 76Manufacturing

A Model for Process Variations

• Recall:

• One or more α’s “qualify” as inputs : u

• The first order Variation ΔY gives the “Variation Equation”

Y = Φ(α )

Y = Φ(α ,u);         u = vector of inputs

Equipment Material

“controls”

Geometry &
Properties
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The Variation Equation

ΔY = ∂Y
∂α

Δα +
∂Y
∂u

Δu

Disturbance
Sensitivity

Disturbances

Control 
Sensitivity or 
“Gain”

Control Inputs
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Primary Process Control Goal: Minimize 
ΔY

ΔY → 0How do we make                            ?

• hold u fixed (Δu = 0)
– operator training   (SOP’s)
– good steady-state machine physics

• minimize disturbances
� Δα ->Δαmin

ΔY = ∂Y
∂α

Δα +
∂Y
∂u

Δu

This is the goal of Statistical Process Control (SPC) This is the goal of Statistical Process Control (SPC) 
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OR

ΔY → 0

• hold u fixed (Δu = 0)

• minimize the term: the disturbance sensitivity

ΔY = ∂Y
∂α

Δα +
∂Y
∂ u

Δu

This is the goal of Process Optimization This is the goal of Process Optimization 

∂Y
∂α

••AssumingAssuming ∂Y
∂α

= Φ(α ) αα = operating point= operating point
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OR

ΔY → 0

• manipulate  Δu by measuring ΔY such that

ΔY = ∂Y
∂α

Δα +
∂Y
∂u

Δu

This is the goal of Process Feedback Control This is the goal of Process Feedback Control 

••Compensating for (not eliminating) disturbancesCompensating for (not eliminating) disturbances

Δu
∂Y
∂u

= −
∂Y
∂α

Δα
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Statistical Process Control

ΔY = ∂Y
∂α

Δα +
∂Y
∂u

Δu

Detect 
and 
Minimize
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Process Optimization

ΔY = ∂Y
∂α

Δα +
∂Y
∂u

Δu

Empirically 
Minimize
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Output Feedback Control

ΔY = ∂Y
∂α

Δα +
∂Y
∂u

Δu

Manipulate 
Actively 
Such that

∂Y
∂u

Δu = −
∂Y
∂α

Δα

Compensate for Disturbances
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Process Control Hierarchy

• Reduce  Disturbances
– Good Housekeeping
– Standard Operations (SOP’s)
– Statistical Analysis and Identification of Sources (SPC)
– Feedback Control of Machines

• Reduce Sensitivity (increase “Robustness”)
– Measure Sensitivities via Designed Experiments
– Adjust “free” parameters to minimize

• Measure output and manipulate inputs
– Feedback control of Output(s)
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