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I :
“" Process Control Hierarchy

e Reduce Disturbances

— Good Housekeeping

— Standard Operations (SOP’s)

— Statistical Analysis and Identification of Sources (SPC)
— Feedback Control of Machines

 Reduce Sensitivity (increase “Robustness”)

— Measure Sensitivities via Designed Experiments
— Adjust “free” parameters to minimize

 Measure output and manipulate inputs
— Feedback control of Output(s)
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Mir The Generic Feedback “Regulator”

Manufacturing PrOblem
D,(s) y D,(s)
R(s) é g Y(s)
—0—{Gs) }o-{6ls) =

‘ H(s)

*Minimize the Effect of the “D’s”
Minimize Effect of Changes in G,

*Follow R exactly
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Mir Effect of Feedback on
Random Disturbances

 Feedback Minimizes Mean Shift (Steady-
State Component)

* Feedback Can Reduce Dynamic
Disturbances




i . .
il Typical Disturbances

* Equipment Control
— External Forces Resisting Motion
— Environment Changes (e.g Temperature)
— Power Supply Changes

 Material Control

— Constitutive Property Changes
 Hardness
* Thickness
« Composition
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Ut The Dynamics of
Manufacturing D iStu rba n CeS

» Slowly Varying Quantities
» Cyclic

* |Infrequent Stepwise

« Random
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Ul Example: Material Property
Changes

* A constitutive property change from
workpiece to workpiece
— In-Process Effect?

* A new constant parameter
« Different outcome each cycle

— Cycle to Cycle Effect

» Discrete random outputs over time
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III .
Manuf

acturing

//////

What is Cycle to Cycle?

|deal Feedback is the Actual Product
Output

This Measurement Can Always be
made After the Cycle

Equipment Inputs can Always be
Adjusted Between Cycles

Within the Cycle Inputs Are Fixed

10



"I"- What is Cycle to Cycle?

* Measure and Adjust Once per Cycle

d
r y
—»O—» Controller —-| Process g é >

Execute the Loop Once Per Cycle

Discrete Intervals rather then Continuous
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Manufacturing
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Run by Run Control

Developed from an SPC Perspective

Primarily used in Semiconductor
Processing

Similar Results, Different Derivations

More Limited in Analysis and
Extension to Larger problems

Box, G., Luceno, A., “Discrete Proportional-Integral Adjustment and Statistical Process
Control,” Journal of Quality Technology, vol. 29, no. 3, July 1997. pp. 248-260.
Sachs, E., Hu, A., Ingolfsson, A., “Run by Run Process Control: Combining SPC and

Feedback Control.” IEEE Transactions on Semiconductor Manufacturing, 1995, vol. 8, no.

1, pp. 26-43.
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i Cycle to Cycle Feedback
Objectives

* How to Reduce E(L(x)) & Increase C, with
Feedback?

* Bring Output Closer to Target

— Minimize Mean or Steady - State Error

* Decrease Variance of Output
— Reject Time Varying Disturbances
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III"_ A Model for Cycle to Cycle
Feedback Control

« Simplest In-Process Dynamics:

. d(t
u®) i é v

Cycle Time T.> 4z,

d(t) = disturbances seen at the output (e.g. a Gaussian noise)

7, = Equivalent Process Time Constant
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He
“" Discrete Product Output

Measurement

u() W

Continuous variable y(t) to sequential variable y;

I = time interval or cycle number
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He
“" The Sampler

d(t) T

u(t) W y(t) )i Y,
y(t) M i .
T,
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Manufacturing

A Cycle to Cycle Process Model

A

y(t)

% gl?u‘ | Yi

Yo

1

3 4

With a Long Sample Time, The Process has
no Apparent Dynamics, i.e. a Very Small Time Constant

5/1/08
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Manufacturing

A Cycle to Cycle Process Model

a discrete input U Yi «— a discrete output
sequence at/—’ Kp ] sequence
interval T, ' at time intervals T,
— Or —
u; / 2 Y
— Equiprﬁent — Mat;a/ial
ae (X‘m
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s (Gycle to Cycle Output Control

Desired

Process
Uncertainty

Pa rt%Q%

Controller — » Process

l Part
O

5/1/08

Output Sampling
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Manufacturing
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Delays

 Measurement Delays
— Time to acquire and gage
— Time to reach equilibrium
« Controller Delays

— Time to “decide”
— Time to compute

* Process Delay
— Waiting for next available machine cycle
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Manufacturing
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Delays

2" = n - step time advance operator

yi+1

yi+2

e.g.
2 *Y =Y .

2 % Yi-2
/4 yi — y|+2
and
L : *yi — yl—l
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Manufacturin
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A Pure Delay Process Model

Yi
Kp
yl — Kpui—l
u y
— 1z, K,
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Manufacturing

* Recall the Output of a “Real Process”

Modeling Randomness

A

PTREL

M

W\/

0l |
M |V

v

g

« Random even with inputs held constant
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Manuf

acturing

Output Disturbance Model

d(t) T.

u() f J} o >y,

Model:
d(t) is a continuous random

variable that we sample every
cycle (T,)

5/1/08
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Mir
=weers - Qr [N Cycle to Cycle Control Terms

<)‘— o

Gy(2) |1 G,(2)

Where:
d(t) is a sequence of random numbers governed by

a stationary normal distribution function
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Normal Identically Distributed Independent

Gaussian White Noise

A continuous random variable that at
any instant is governed by a normal
distribution

From instant to instant there is no
correlation

Therefore if we sample this process we
get:

A NIDI random number

i
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The Gaussian “Process”
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Manufacturing

Constant (Mean Value) Disturbance
Rejection- P control

d, ~NIDI(u, o)

i l Yi
1K, Koz o Ty =d + K Ui

|

If d. = u (a constant), we can look at steady - state behavior:

Ui_, = Kc(r — yi—l)
Yi = di T Kch(r = yi—l)

d. KK,
+ T
1+ KK, 1+KK,
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Manufacturing
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And For Example

Thus If we want to eliminate the constant
(mean) component of the disturbance

y, 1 1
d, 1+K,K, 1+K

but only

K = « eliminates mean shifts

Higher loop gain K improves “rejection”

Lecture 20 © D.E. Hardt.
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Error: Try an Integrator
u =K. ) e running sum of all errors
j=1
u., =u+Ke. recursive form (e =r—y.)
4 Z U
U=U+KzE —> G (2)= Kcﬁz—
d;
r+>K oz Ui 7& Cl) Yi |
- “z-1 7
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Uk Constant Disturbance -

Integral Control
D
O P W L 9] S
- z—-1 \&
z—1
Y(z)= D (Assume r=0)
z-1+K.K,

or Y+ (1_ KcKp)yi — di+1 - di
Zero error

Again at steady state Y, ., =Y. = VY, regardless
of loop

And since D is a constant Y, (2— K K )=0 |gain
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Mlifr Effect of Loop Gain K on Time Response:
Manufacturing |-C0ntr0|

Step Response
Step Response pResp

+0 el 1.0 _‘ M —
L

K=0.5 K=1.5

Amplitude

2 4 6 8 10 12 ,
Time (samples)
Time (samples)

Step Response Step Response

o o

K=0.9 K=

S

0 10 20 30 40
Time (samples)

Amplitude

2 4 6 8 10
Time (samples)
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"I"- Effect of Loop Gain K = K K,

Step Response

1.0

K=1.0

Amplitude

Best performance at Loop Gain K= 1.0

Stability Limits on Loop Gain  0<K<2
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Manufacturing

What about random component of d?

» d; is defined as a NIDI sequence

 Therefore:

— Each successive value of the sequence is
probably different

— Knowing the prior values: d.,, d.,, d.,,...
will not help in predicting the next value

eg. d=ad ,+ad ,+ad _,+..

|
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r T
Manufacturing h u S

This implies that with our cycle to cycle
process model under proportional control:

r—@_e—'@ u=Kp/z X(?)i L,

|

The output of the plant x; will at best represent the error
from the previous value of d_,

X. ==K, Kpdi ) will not cancel d,
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Ut Variance Change with Loop
Gain

2.4

o2
CtC 29 S/

1.8

1.6
1.4 /

1.2

0 0.2 04 0.6 0.8 1 1.2

Loop Gain
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ir Conclusion - CtC with Un-Correlated
(Independent) Random Disturbance

“I”

* Mean error will be zero using “I” control
» Variance will increase with loop gain

° . -1 =~ *
Increase in cat K=1~1.5 T epen oop

-t rrrrr - T I .
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Manufacturing

What if the Disturbance is not NIDI?

NIDI Filter
Sequence (Correlator)

CD(Z)(z —a) = aD(2)

expect some correlation,

therefore ability to
Cdi+1 — a(di = Cdi) counteract some of the

f \ disturbances

Lecture 20 © D.E. Hardt.
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|'|Il_ What if the Disturbance is
not NIDI?

Proportional Control

Simulation

K. 0% 162,
A 2 I
I B 0.1 | 0.89
—J 025 077
0.5 0.69
0.9 1.39
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Gain - Variance Reduction
GétC
2
o
2.0
Increasing Correlation
1.0 - je=——====

0 0.5 .0 -00P Gain
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Mir Conclusion - CtC with Correlated
(Dependent) Random Disturbance

* Mean error will be zero using “I” control
« Variance will decrease with loop gain
* Best Loop Gain is still K K/ =1

3
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Manufacturing
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Conclusions from
Cycle to Cycle Control Theory

* Feedback Control of NIDI Disturbance
will Increase Variance

— Variance Increases with Gain

« BUT: If Disturbance is NID but not [
We CAN Decrease Variance
— Higher Gains -> Lower Variance

— Design Problem: Low Error and Low
Variance

Lecture 20 © D.E. Hardt. J
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Manufacturing

How to Tell if Disturbance
IS Independent

» Correlation of output data
— Look at the Autocorrelation
— Effect of Filter on Autocorrelation

* Reaction of Process to Feedback
— If variance decreases data has dependence

Lecture 20 © D.E. Hardt. J
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Manufacturing

|s Disturbance
Is Independent?

 Correlation of output data )
— Look at the Autocorrelation @, (z) = [ x(t)x(t— z)dt
— Effect of Filter on Autocorrelation

 Reaction of Process to Feedback

— If variance decreases then data must have
some dependence

Lecture 20 © D.E. Hardt. J
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I
" But Does It Really Work?

— Let’s Look at Bending and Injection
Molding

Lecture 20 © D.E. Hardt.
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Manufacturing

5/1/08

Experimental Data

Cycle to Cycle Feedback Control
of
Manufacturing Processes

by
George Tsz-Sin Siu

SM Thesis
Massachusetts Institute of Technology

February 2001

Lecture 20 © D.E. Hardt. J
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Manufacturing

5/1/08

Experimental Results

* Bending
— Expect NIDI Noise
— Can Have Step Mean Changes

* Injection Molding

— Could be Correlated owing to Thermal
Effects

— Step Mean Changes from Cycle
Disruption

47
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Process Model for Bending

K

o

Yi = K Uy

p

K
Y(z) =— K,=?
VA
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I :
“" Process Model for Bending

Local Response Curve (Mat'l 1)
60

90 -

40 -

20 -

! ! y = 150.85x - 156
10 oomremeeneee AR R°=0.9992 -

0 E E E E
1.15 1.2 1.25 1.3 1.35 1.4
Punch depth
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Manufacturing

Results for K.=0.7;44=0

36.5 : : : : : : : :
. Open-loop . . . Closed-loop
. 36— e e — —t
= . . . : : : :
=
< 3551
Target 35 +
34.5 A
34 - '
O'
CtC =—
33.5 : : . , , > =1.67
0 10 20 30 40 50 O 100
run number | Theoretical
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He
”" |-Control 4470

Tar —735 7--

Angle

_ 10 15 20
Material Run number

(@) P = §
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i Minimum Expected Loss
Integral-Controller

Calculated Expected Loss vs. Gain
Experimental Verification

0 0.2 04 0.6 0.8 1 1.2 1.4

1.6 1.8 2
Feedback Gain, Kc i

il Lecture 20 © D.E. Hardt.
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Mir Disturbance Response for
“Optimal” Integral Control Gain

Target 35 A

LApRe

P .-Q.QZS.’.’..siee.l-to-Q‘in’.’..steel ...... .................

0 5 10 15 20 25
Material
Shift

Run number
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Manufacturing

YA :,Bo "‘:Bz ' Xz + 133 ' X3 + /823' Xz 'X3 Initial Model

Injection Molding:
Process Model

Process inputs Levels
X2 = Hold time (seconds) 5 sec 20 sec
X3 = Injection speed (in/sec) 0.5 in/sec 6 in/sec

ANOVA on model terms

Effect beta SS DOF MS F Fcrit | p-value
1 1.437 49.6 1 49.568 2E+07 | 4.35 0
X2 (Hold time) -1.04E-03 0 1 2.60E-05 | 10.593 | 4.35 0.004
X3 (Injection speed) -3.75E-04 0 1 3.38E-06 1.373 4.35 0.255
X2X3
(Hold time*Injection speed) 2.92E-04 0 1 2.04E-06 0.831 4.35 0.373
Error 0 20 | 2.46E-06
ATotaI 49.6 24
Y=0,+/0,-X,  FinalModel

Lecture 20 © D.E. Hardt.
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P-Control Injection Molding

Manufacturing
1.45
1.445 |4
1,44 - ---onenepoin e

1.43

Ciapnatier

1.42 -

1.435 1.7

Open Loop

Closed Loop, Gain = 0.5

1 A1EK

5/1/08 |

Lecwre v © v.c. Harut.

: Mean(Hot : Variance
Experiment measu rement) Variance Ratio
Open-loop 1.437 9.97E-06
Closed-loop 1.439 2.34E-06
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Manufacturing
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0.8

06

04

02

o

-0.2

-0.4

-0.6

-0.8

Output Autocorrelation

-l ; z:| I
LI L'Ll ‘

5 10 15 2 0

Bending

5 1

Injection Molding

Matlab function XCORR
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I :
”" P-control: Moving Target

1455 Closed L Closed L : '
osed Loop osed Loop . Open Loop

1.45 +----- Target =1.436 -------... Target =1.44 .--coooaoovt. .
: : N o I : >
1445 _.---------........-----------------.E.......-----I.-----------.........---.E------------

144 A} ------- .. 2% e - --0e--T- : L IO _: ___:

8 ﬁ . K WA

143 T N T = N Py v | B
1.425

142 - A\ Lgh TN LA D LA A M TR D 6 A e
1 . . . . .
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Il Injection Molding:
Integral Control

1.45

1.445 -

1.44 -

1.435 -

1.43 4ol o e S A

Dbamietaer

1425 - pmmmmmnamn e A T PO oA
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Conclusion

 Model Predictions and Experiment are
iIn Good Agreement
— Delay - Gain Process Model
— Normal - Additive Disturbance

— Effect of Correlated vs. Uncorrelated
(NIDI) Disturbances

Lecture 20 © D.E. Hardt. J
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e .
i Conclusion

* Cycle to Cycle Control
— Obeys Root Locus Prediction wrt Dynamics
— Amplifies NIDI Disturbance as Expected
— Attenuate non-NIDI Disturbance
— Can Reduce Mean Error (Zero if I-control)
— Can Reduce “Open Loop” Expected Loss
— Correlation Sure Helps!!!!

« Can be Extended to Multivariable Case

— PhD by Adam Rzepniewski (5/5/05)

« Developed Theory and demonstrated on 100X100
problem (discrete die sheet forming)
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