MIT OpenCourseWare http://ocw.mit.edu

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Control of Manufacturing Processes

Subject 2.830

Spring 2007

Lecture #20

"Cycle To Cycle Control:

The Case for using Feedback and SPC" May 1, 2008

The General Process Control Problem

Control of Equipment:

Forces,

Velocities

Temperatures,

, --

Control of Material

Strains

Stresses

Temperatures,

Pressures, ..

Control of **Product**:

Geometry

and

Properties

Output Feedback Control

$$\Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u$$

$$\frac{\partial Y}{\partial u} \Delta u = -\frac{\partial Y}{\partial \alpha} \Delta \alpha$$

Manipulate Actively Such that

Compensate for Disturbances

Process Control Hierarchy

- Reduce Disturbances
 - Good Housekeeping
 - Standard Operations (SOP's)
 - Statistical Analysis and Identification of Sources (SPC)
 - Feedback Control of Machines
- Reduce Sensitivity (increase "Robustness")
 - Measure Sensitivities via Designed Experiments
 - Adjust "free" parameters to minimize
- Measure output and manipulate inputs
 - Feedback control of Output(s)

The Generic Feedback "Regulator" Problem

- Minimize the Effect of the "D's"
- Minimize Effect of Changes in G_p
- Follow R exactly

Effect of Feedback on Random Disturbances

- Feedback Minimizes Mean Shift (Steady-State Component)
- Feedback Can Reduce Dynamic Disturbances

Typical Disturbances

- Equipment Control
 - External Forces Resisting Motion
 - Environment Changes (e.g Temperature)
 - Power Supply Changes
- Material Control
 - Constitutive Property Changes
 - Hardness
 - Thickness
 - Composition
 - •

The Dynamics of Disturbances

- Slowly Varying Quantities
- Cyclic
- Infrequent Stepwise
- Random

Example: Material Property Changes

- A constitutive property change from workpiece to workpiece
 - In-Process Effect?
 - A new <u>constant</u> parameter
 - Different outcome each cycle
 - Cycle to Cycle Effect
 - Discrete random outputs over time

What is Cycle to Cycle?

- Ideal Feedback is the Actual Product Output
- This Measurement Can Always be made After the Cycle
- Equipment Inputs can Always be Adjusted Between Cycles
- Within the Cycle Inputs Are Fixed

What is Cycle to Cycle?

Measure and Adjust Once per Cycle

Execute the Loop Once Per Cycle

Discrete Intervals rather then Continuous

Run by Run Control

- Developed from an SPC Perspective
- Primarily used in Semiconductor Processing
- Similar Results, Different Derivations
- More Limited in Analysis and Extension to Larger problems

Box, G., Luceno, A., "Discrete Proportional-Integral Adjustment and Statistical Process Control," *Journal of Quality Technology*, vol. 29, no. 3, July 1997. pp. 248-260. Sachs, E., Hu, A., Ingolfsson, A., "Run by Run Process Control: Combining SPC and Feedback Control." *IEEE Transactions on Semiconductor Manufacturing*, 1995, vol. 8, no. 1, pp. 26-43.

Cycle to Cycle Feedback Objectives

 How to Reduce E(L(x)) & Increase C_{pk} with Feedback?

- Bring Output Closer to Target
 - Minimize Mean or Steady State Error
- Decrease Variance of Output
 - Reject Time Varying Disturbances

A Model for Cycle to Cycle Feedback Control

Simplest In-Process Dynamics:

d(t) = disturbances seen at the output (e.g. a Gaussian noise)

 τ_p = Equivalent Process Time Constant

Discrete Product Output Measurement

Continuous variable y(t) to sequential variable y_i

i = time interval or cycle number

The Sampler

A Cycle to Cycle Process Model

With a Long Sample Time, The Process has no Apparent Dynamics, i.e. a Very Small Time Constant

A Cycle to Cycle Process Model

a discrete input sequence at interval T_c

a discrete output sequence at time intervals T_c

Cycle to Cycle Output Control

Delays

- Measurement Delays
 - Time to acquire and gage
 - Time to reach equilibrium
- Controller Delays
 - Time to "decide"
 - Time to compute
- Process Delay
 - Waiting for next available machine cycle

Delays

 $z^n = n$ - step time advance operator

e.g.

$$z^1 * y_i = y_{i+1}$$

$$z^{1} * y_{i} = y_{i+1}$$

$$z^{2} * y_{i} = y_{i+2}$$

and

$$z^{-1} * y_i = y_{i-1}$$

A Pure Delay Process Model

$$y_i = K_p u_{i-1}$$

Modeling Randomness

Recall the Output of a "Real Process"

Random even with inputs held constant

Output Disturbance Model

Model:

d(t) is a continuous random variable that we sample every cycle (T_c)

Or In Cycle to Cycle Control Terms

Where:

d(t) is a sequence of random numbers governed by

a stationary normal distribution function

Gaussian White Noise

- A continuous random variable that at any instant is governed by a normal distribution
- From instant to instant there is no correlation
- Therefore if we sample this process we get:
- A NIDI random number

The Gaussian "Process"

Constant (Mean Value) Disturbance Rejection- P control

if $d_i = \mu$ (a constant), we can look at steady - state behavior:

$$y_i \Rightarrow y_{i-1} \Rightarrow y_{\infty} = \frac{d_i}{1 + K_p K_c} + r \frac{K_p K_c}{1 + K_p K_c}$$

And For Example

Thus if we want to eliminate the constant (mean) component of the disturbance

$$\frac{y_{\infty}}{d_i} = \frac{1}{1 + K_p K_c} = \frac{1}{1 + K}$$

Higher loop gain K improves "rejection" but only

K = ∞ eliminates mean shifts

Error: Try an Integrator

$$u_i = K_c \sum_{j=1}^i e_i$$

running sum of all errors

$$u_{i+1} = u_i + K_c e_{i+1}$$

recursive form $(e_i = r - y_i)$

$$zU = U + K_c zE \qquad \Longrightarrow \qquad$$

$$zU = U + K_c zE$$
 \Longrightarrow $G_c(z) = K_c \frac{z}{z - 1} = \frac{u}{e}$

Constant Disturbance -**Integral Control**

$$Y(z) = \frac{z - 1}{z - 1 + K_c K_p} D$$

(Assume r=0)

or
$$y_{i+1} + (1 - K_c K_p) y_i = d_{i+1} - d_i$$

Again at steady state $y_{i+1} = y_i = y_{\infty}$

And since D is a constant $y_{\infty}(2 - K_c K_p) = 0$

$$y_{\infty}(2-K_cK_p)=0$$

Zero error regardless of loop gain

Effect of Loop Gain K on Time Response: I-Control

Effect of Loop Gain K = K_cK_p

Best performance at Loop Gain K= 1.0

Stability Limits on Loop Gain 0<K<2

What about random component of *d*?

- d_i is defined as a NIDI sequence
- Therefore:
 - Each successive value of the sequence is probably different
 - Knowing the prior values: d_{i-1} , d_{i-2} , d_{i-3} ,... will not help in predicting the next value

e.g.
$$d_i \neq a_1 d_{i-1} + a_2 d_{i-2} + a_3 d_{i-3} + \dots$$

Thus

This implies that with our cycle to cycle process model under *proportional* control:

The output of the plant x_i will at best represent the error from the previous value of d_{i-1}

$$x_i = -K_c K_p d_{i-1}$$

will not cancel d_i

Variance Change with Loop Gain

Conclusion - CtC with Un-Correlated (Independent) Random Disturbance

- Mean error will be zero using "I" control
- Variance will increase with loop gain
- Increase in σ at $K=1 \sim 1.5 * \sigma_{\text{open loop}}$

What if the Disturbance is not NIDI?

expect some correlation, therefore ability to counteract some of the disturbances

What if the Disturbance is not NIDI?

Proportional Control

Simulation

K _c	$\sigma^2_{\text{Ctc}}/\sigma^2_{\text{o}}$
0	1
0.1	0.89
0.25	0.77
0.5	0.69
0.9	1.39

Gain - Variance Reduction

5/1/08

Conclusion - CtC with Correlated (Dependent) Random Disturbance

- Mean error will be zero using "I" control
- Variance will decrease with loop gain
- Best Loop Gain is still K_cK_p =1

Conclusions from Cycle to Cycle Control Theory

- Feedback Control of NIDI Disturbance will Increase Variance
 - Variance Increases with Gain
- BUT: If Disturbance is NID but not I;
 We CAN Decrease Variance
 - Higher Gains -> Lower Variance
 - Design Problem: Low Error and Low Variance

How to Tell if Disturbance is Independent

- Correlation of output data
 - Look at the Autocorrelation
 - Effect of Filter on Autocorrelation
- Reaction of Process to Feedback
 - If variance decreases data has dependence

Is Disturbance is Independent?

- Correlation of output data
 - Look at the Autocorrelation $\Phi_{xx}(\tau) = \int x(t)x(t-\tau)dt$
 - Effect of Filter on Autocorrelation
- Reaction of Process to Feedback
 - If variance decreases then data must have some dependence

But Does It Really Work?

Let's Look at Bending and Injection
 Molding

Experimental Data

Cycle to Cycle Feedback Control of

Manufacturing Processes

by

George Tsz-Sin Siu

SM Thesis

Massachusetts Institute of Technology

February 2001

Experimental Results

- Bending
 - Expect NIDI Noise
 - Can Have Step Mean Changes

- Injection Molding
 - Could be Correlated owing to Thermal Effects
 - Step Mean Changes from Cycle Disruption

Process Model for Bending

$$y_i = K_p u_{i-1}$$

$$Y(z) = \frac{K_p}{z}$$

$$K_p = ?$$

Process Model for Bending

Results for $K_c=0.7$; $\Delta \mu=0$

I-Control Δμ≠0

Minimum Expected Loss Integral-Controller

Disturbance Response for "Optimal" Integral Control Gain

Injection Molding: Process Model

$$\hat{Y} = \beta_0 + \beta_2 \cdot X_2 + \beta_3 \cdot X_3 + \beta_{23} \cdot X_2 \cdot X_3$$
 Initial Model

	Process inputs	Levels	
X2	= Hold time (seconds)	5 sec	20 sec
X3 =	Injection speed (in/sec)	0.5 in/sec	6 in/sec

ANOVA on model terms

Effect	beta	SS	DOF	MS	F	Fcrit	p-value
1	1.437	49.6	1	49.568	2E+07	4.35	0
X2 (Hold time)	-1.04E-03	0	1	2.60E-05	10.593	4.35	0.004
X3 (Injection speed)	-3.75E-04	0	1	3.38E-06	1.373	4.35	0.255
X2X3							
(Hold time*Injection speed)	2.92E-04	0	1	2.04E-06	0.831	4.35	0.373
Error		0	20	2.46E-06			
Total		49.6	24				

$$\hat{Y} = \beta_0 + \beta_2 \cdot X_2$$

Final Model

P-Control Injection Molding

Output Autocorrelation

P-control: Moving Target

Injection Molding: Integral Control

Conclusion

- Model Predictions and Experiment are in Good Agreement
 - Delay Gain Process Model
 - Normal Additive Disturbance
 - Effect of Correlated vs. Uncorrelated (NIDI) Disturbances

Conclusion

- Cycle to Cycle Control
 - Obeys Root Locus Prediction wrt Dynamics
 - Amplifies NIDI Disturbance as Expected
 - Attenuate non-NIDI Disturbance
 - Can Reduce Mean Error (Zero if I-control)
 - Can Reduce "Open Loop" Expected Loss
 - Correlation Sure Helps!!!!
- Can be Extended to Multivariable Case
 - PhD by Adam Rzepniewski (5/5/05)
 - Developed Theory and demonstrated on 100X100 problem (discrete die sheet forming)