MIT OpenCourseWare http://ocw.mit.edu

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Control of Manufacturing Processes

Subject 2.830/6.780/ESD.63

Spring 2008

Lecture #17

Nested Variance Components

April 15, 2008

Readings/References

 D. Drain, Statistical Methods for Industrial Process Control, Chapter 3: Variance Components and Process Sampling Design, Chapman & Hall, New York, 1997.

Agenda

- Standard ANOVA
 - Looking for fixed effect vs. chance/sampling
- Nested variance structures
 - More than one zero-mean variance at work
 - Want to estimate these variances
- Examples
 - Based on simple ANOVA
 - Two-level example (from Drain)
 - Three-level example (from Drain)
- Implications for design of sampling and experimental plans

Standard Analysis of Variance (ANOVA)

- Question in single variable ANOVA:
 - Are we seeing anything other than random sampling from a single (Normal) distribution?

Approach:

- Estimate variance of the natural variation from observed replication for each treatment level (i.e., estimate the within-group variance)
- Estimate the between-group variance
 - Could be due to a fixed effect
 - Could be due to chance (random sampling)
- Consider probability of a ratio of these two variances as large as what was observed, if only a single (Normal) distribution is at work

ANOVA Example

- Groups are different levels of some treatment
- Goal determine if there is a non-zero fixed-effect or not

Hypotheses in ANOVA

- Null Hypothesis: Random Sampling from Single Distribution
 - E.g. we draw multiple samples of some size
 - What range of variance ratios among these samples would we expect to see purely by chance?
 - Assumed model:

$$x_i = \mu + \epsilon_i$$

$$\epsilon_i \sim N(0, \sigma^2)$$

- Fixed Effects Model
 - The alternative hypothesis is that there is a fixed effect between the treatment groups (where i indicates group, and j indicates replicate within group) $x_{j(i)} = \mu + t_i + \epsilon_j$
 - Assumed model:

$$\epsilon_j \sim N(0, \sigma^2)$$

Some Definitions (for ANOVA Calculations)

- Deviations from grand mean
 - Individual data point from grand mean:
 - Squared deviation of point from grand mean:
 - Sum of squared deviations from grand mean:
- Deviations of group mean from grand mean
 - Deviation of group *i* mean from grand mean:
 - Squared dev of group mean from grand mean:
 - Sum of squared deviations of group means:
- Deviations from local group mean
 - Deviation of individual point j (within group i) from the group mean:
 - Squared deviation from group mean:
 - Sum of squared deviations from group mean:

$$x_{ij} - \bar{x}$$

$$S_D = (x_{ij} - \bar{x})^2$$

$$SS_D = \sum_{ij} (x_i - \bar{x})^2$$

$$\bar{x}_i - \bar{\bar{x}}$$

$$S_G = (\bar{x}_i - \bar{\bar{x}})^2$$

$$SS_G = \sum_i \sum_{j(i)} (\bar{x}_i - \bar{\bar{x}})^2$$

$$x_{j(i)} - \bar{x}_i$$

$$S_E = (x_{j(i)} - \bar{x}_i)^2$$

$$SS_E = \sum_i \sum_{i \in S} (x_{j(i)} - \bar{x}_i)^2$$

Simple ANOVA Example

			Squared devs of point from grand ave	Squared devs of group ave from grand ave	Squared devs of point from group ave
Group	Value G	Group Ave	S_D	S_G	S_E
1	3	4	9	4	1
	5	4	1	4	1
2	7	8	1	4	1
	9	8	9	4	1
Grand Ave Grand Var	6 6.67	SS_D =	20 SS_G =	16 SS_E =	4
	ANOVA				
Source C TOTAL	d.o.f. 3	SS 20.00	MS 6.67	F	Pr > F
GROUP	1	16.00	16.00	8.00	0.11
ERROR	2	4.00	2.00		

Nested Variance Structure

- Two different, independent sources of variation
 - "within group" variance (σ_{wq}^2)
 - "between group" variance (σ_{gg}^2)
- Assumed model: $x_{ij} = \mu + G_i + \epsilon_{j(i)}$ $G_i \sim N(0, \sigma_{gg}^2)$ $\epsilon_{j(i)} \sim N(0, \sigma_{wg}^2)$
 - Key difference from standard ANOVA:
 - This does NOT postulate a fixed effect (mean offset) between groups
 - Rather, random group offset (still zero mean), the same for all members within that group j

Nested Variance Example (Same Data)

- Now groups are simply replicates (not changing treatment)
- But... assume there are two different sources of zero mean variances
- Goal estimate these two variances

Estimating Variances – A Naïve Attempt

- Within-group variance
 - Use Error Mean Square from ANOVA:

•
$$\sigma_{wg}^2 = 2.0$$

- Between-group variance
 - Use Group Mean Square from ANOVA:

•
$$\sigma_{gg}^2 = 16.0$$

- Total variance
 - Use CTOT Mean Square from ANOVA:

•
$$\sigma_T^2 = 6.67$$

MKONG!

Where Do Nested Variance Structures Arise?

- Typically occur in batch or parallel manufacturing processes
- Very common in semiconductor manufacturing
 - multiple chips or die within a wafer,
 multiple wafers within a lot,
 multiple lots within a batch
 - Physical causes of variation at each level are typically different

Our Goal:

- Point estimates for each source of variation
- Confidence intervals for each variance

Nested Structures

- Items within a group tend to be more similar to each other:
 - Measure film thickness on a wafer
 - $T(x,y) \sim N(\mu, \sigma^2_{\text{within-wafer}})$ a reasonable model?
 - E.g. arise due to uniformity of temperature, gas flows within a particular deposition chamber
 - Measure film thickness averages on multiple wafers
 - $T_{ave} \sim N(\mu, \sigma^2_{wafer-to-wafer})$ a reasonable model?
 - E.g. may arise due to run-to-run repeatability of the tool as a whole

Single Level Variance Structure

Multiple measurements on same wafer

$$X_i = \mu + M_i$$

$$M_i \sim N(0, \sigma_M^2)$$

- *M_i* indicates measurement
 - measurement location is randomly selected
 - each measurement is IIND
 - Independent & Identically Normally Distributed
 - zero mean, variance = σ^2_{M}

Two Level Variance Structure

Multiple measurements on multiple wafers

$$X_{ij} = \mu + W_i + M_{j(i)}$$

$$W_i \sim N(0, \sigma_W^2) \text{ for } i = 1 \cdots W$$

 $M_{j(i)} \sim N(0, \sigma_M^2) \text{ for } j = 1 \cdots M$

- *W_i* indicates wafer
 - wafer selected at random from wafer group
 - each wafer mean is assumed to be IIND as above
- M_{i(i)} indicates measurements within wafer i
 - measurement location is randomly selected
 - each measurement is IIND as above

Total Variance (for Individual Measurement)

Variance components add

$$Var[X_{ij}] = Var[\mu] + Var[W_i] + Var[M_{j(i)}]$$
$$\sigma_T^2 = \sigma_W^2 + \sigma_M^2$$

- Individual variances are assumed independent

Note: this relationship did not hold in naïve attempt!

Variance in *Observed* Averages

 Key Idea: the variance observed for the wafer average will NOT be equal to the true wafer to wafer variance, due to additional measurement variance and sampling:

$$\sigma_{ar{W}}^2 = \sigma_W^2 + rac{\sigma_M^2}{M}$$
 I.e., wafer average is inflated by the measurement variance

 Thus, if we want to estimate the actual wafer-to-wafer variance:

$$\sigma_W^2 = \sigma_{\bar{W}}^2 - \frac{\sigma_M^2}{M}$$

Derivation: Variance in Observed Averages

Observed wafer average for wafer i:

$$\bar{W}_{i} = \frac{1}{M} \sum_{j=1}^{M} X_{ij} = \frac{1}{M} \sum_{j=1}^{M} (\mu + W_{i} + M_{j(i)})$$

$$= \frac{1}{M} (M\mu + MW_{i} + \sum_{j=1}^{M} M_{j(i)})$$

$$= \mu + W_{i} + \frac{1}{M} \sum_{j=1}^{M} M_{j(i)}$$

So variance in observed wafer averages:

$$\operatorname{Var}[\bar{W}_i] = \operatorname{Var}[\mu] + \operatorname{Var}[W_i] + \frac{1}{M^2} \cdot M \cdot \operatorname{Var}[M_{j(i)}]$$
$$\sigma_{\bar{W}}^2 = \sigma_W^2 + \frac{\sigma_M^2}{M}$$

Note: Observed Total Variance is Always Smaller than Estimated Total Variance

• We assume two independent sources of variation are at work, so estimated total variance is: $\sigma_T^2 = \sigma_W^2 + \sigma_M^2$

 The "observed" total variance has sampling effects in it, making it smaller than actual total variance:

$$\sigma_{T_{\text{observed}}}^2 = \frac{(W-1) \cdot \sigma_W^2 + W(M-1) \cdot \sigma_M^2}{WM-1} = \frac{SS_E}{N-1}$$

$$= \frac{W-1}{WM-1} \cdot \sigma_W^2 + \frac{WM-W}{WM-1} \cdot \sigma_M^2 \quad < \quad \sigma_W^2 + \sigma_M^2$$

Back to Simple Nested Variance Example

Within-group variance

$$\sigma_{wg}^2 = 2.0$$

Observed group-group variance

$$\sigma_{\bar{g}g}^2 = ((8-6)^2 + (6-4)^2)/1$$
= 8.0

 Estimated actual groupgroup variance

$$\sigma_{gg}^2 = \sigma_{g\bar{g}}^2 - \frac{\sigma_{wg}^2}{2}$$

$$= 7.0$$
 $M = 2$
measurements in each group

Estimated total variance

$$\sigma_T^2 = \sigma_{gg}^2 + \sigma_{wg}^2$$
$$= 9.0$$

Example: Resistivity across Multiple Wafers

Wafer	Resistivity Measurement
1	47.85 46.48 47.68
2	55.97 55.67 56.26
3	48.43 50.39 50.86
4	47.45 49.49 45.81
5	47.12 47.43 48.73
6	51.09 49.04 47.72

Figure by MIT OpenCourseWare.

Figure by MIT OpenCourseWare.

- Same process for all wafers
 - Not introducing different 'treatments"
- Three measurements (randomly chosen on each wafer) of resistivity

Example: Resistivity across Multiple Wafers (2)

Nested variance ANOVA results from Drain

Variance Source	Degrees of Freedom	Sum of Squares	F Value	<i>Pr</i> > <i>F</i>	Error Term
Total	17	178.499361			
Wafer	05	159.863028	20.5873	0.000017	Error
Error	12	18.636333			

Variance Source	Mean Square	Variance Component	Percent of Total
Total	10.499962	11.692887	100.0000
Wafer	31.972606	10.139859	86.7182
Error	1.553028	1.553028	13.2818
	Observed	Estimated	Figure by MIT Open

- Based on "SAS PROC NESTED"
 - What does it mean?
 - How did he do that? ... See spreadsheet

Interval Estimates on Variance Components

Variance Source	Lower Limit	Point Estimate	Upper Limit
Total	5.83196	11.692887	47.5806
Wafer	4.27950	10.139859	45.9730
Error	0.88634	1.553028	3.56606

Figure by MIT OpenCourseWare.

From Drain

- Error (site-to-site variance): use Chi-square distribution
 - Claims to be 95% c.i., ... but table shows 90% c.i.
- Wafer (wafer-to-wafer variance):
 - Not sure what relationship used for c.i. calculation by Drain (SAS PROC NESTED). See spreadsheet for conservative approach. $\binom{n}{2}$ 1) c^2

Three Level Variance Structure

Multiple measurements on multiple wafers in multiple lots

$$X_i = \mu + L_i + W_{j(i)} + M_{k(ij)}$$

$$L_i \sim N(0, \sigma_L^2) \text{ for } i = 1 \cdots L$$
 $W_{j(i)} \sim N(0, \sigma_W^2) \text{ for } j = 1 \cdots W$
 $M_{k(ij)} \sim N(0, \sigma_M^2) \text{ for } k = 1 \cdots M$

- *L_i* indicates lot
 - lot selected at random from set of lots
 - each lot mean is assumed to be IIND as above
- $W_{j(i)}$ indicates wafer j within lot i
- $M_{k(ij)}$ indicates measurement k within wafer j within lot i

Variance in Observed Averages, Three Levels

 As in the two level case, the observed averages include lower level variances, reduced by number of samples

$$\sigma_{\bar{L}}^2 = \sigma_L^2 + \frac{\sigma_W^2}{W} + \frac{\sigma_M^2}{MW}$$

 Above is for a balanced sampling plan, with equal number of wafers and measurements for each lot

Three Level Example

Figure by MIT OpenCourseWare.

- 11 Lots
- 3 Wafers within each lot
- 2 Measurements within each wafer

Ref: Drain, p. 198

Three Level Analysis – Point Estimates

Variance Source	Degrees of Freedom	Sum of Squares	F Value	<i>Pr</i> > <i>F</i>	Error Term
Total	65	4025.487062			
Lot	10	1453.333712	1.27299	0.303499	Wafer
Wafer	22	2511.673500	62.2936	0.000000	Error
Error	33	60.479850			

Variance Source	Mean Square	Variance Component	Percent of Total
Total	61.930570	63.194249	100.0000
Lot	145.333371	5.194399	8.2197
Wafer	114.166977	56.167127	88.8801
Error	1.832723	1.832723	2.9000

Figure by MIT OpenCourseWare.

See spreadsheet example.
 Several tricky parts!

Manufacturing

Three Level Analysis – Interval Estimates

Variance Source	Lower Limit	Point Estimate	Upper Limit
Total	44.4215	63.194249	127.324
Lot	-94.8509	5.194399	222.068
Wafer	33.2254	56.167127	113.423
Error	1.19231	1.832723	3.17535

Figure by MIT OpenCourseWare.

"Negative" variance – set to lower bound of zero

Outer vs. Inner Levels of Variance

 When we observe/calculate an outer (higher) level average, what most strongly affects this?

$$\sigma_{\bar{L}}^2 = \sigma_L^2 + \frac{\sigma_W^2}{W} + \frac{\sigma_M^2}{MW}$$

 With appreciable number of wafers and measurements, the inner levels of variance are "averaged away"

Why worry about $\sigma_{\bar{x}}^2$?

- Often make decisions based on estimates for the true outer-level average
- One approach:
 - Calculate/observe multiple averages empirically
 - Use these to estimate variance in the mean
 - E.g. confidence interval on average

$$\bar{x} - z_{\alpha/2} \cdot \sigma_{\bar{x}} \leq \mu \leq \bar{x} + z_{\alpha/2} \cdot \sigma_{\bar{x}}$$

Or with small number of samples

$$\bar{x} - t_{\alpha/2} \cdot s_{\bar{x}} \leq \mu \leq \bar{x} + t_{\alpha/2} \cdot s_{\bar{x}}$$

• So... want sampling plans to minimize $\sigma_{\bar{x}}^2$

Implication: Sampling in Nested Cases

- Suppose we have a limited set of resources (e.g. lots, wafers, measurement), or given cost constraints
 - Use variance estimates to decide how to nest the measurements
 - If estimating an outer level value, e.g. lot average, we can often improve variance estimate by replicating at the outer rather than inner levels (i.e. increase W rather than M)

$$\sigma_{\bar{L}}^2 = \sigma_L^2 + \frac{\sigma_W^2}{W} + \frac{\sigma_M^2}{MW}$$

Summary

Nested Variance Structures

- When have sets of measurements "within" another spatial construct
- Assumes independent sources of variance

Variance Components

- Unwrap variances from inside toward outside
- Point and interval estimates possible

Implications in sampling plan design

 Allocate measurements, replications where most valuable for variance being estimated

