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Readings/References

 D. Drain, Statistical Methods for Industrial
Process Control, Chapter 3: Variance
Components and Process Sampling Design,
Chapman & Hall, New York, 1997.
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Agenda

e Standard ANOVA
— Looking for fixed effect vs. chance/sampling

 Nested variance structures
— More than one zero-mean variance at work
— Want to estimate these variances
o Examples
— Based on simple ANOVA
— Two-level example (from Drain)
— Three-level example (from Drain)

 Implications for design of sampling and
experimental plans

Nir
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Standard Analysis of Variance (ANOVA)

e Question In single variable ANOVA:

— Are we seeing anything other than random sampling
from a single (Normal) distribution?

« Approach:

— Estimate variance of the natural variation from
observed replication for each treatment level (i.e.,
estimate the within-group variance)

— Estimate the between-group variance
e Could be due to a fixed effect
e Could be due to chance (random sampling)

— Consider probability of a ratio of these two variances
as large as what was observed, if only a single
(Normal) distribution is at work
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ANOVA Example

o Groups are different
levels of some
treatment

within-group
variation

e Goal — determine if

between-grou .
Jroup there Is a non-zero

5 o variation .
X I — fixed-effect or not
-1 ()
within-group
variation
l l ;
| |
Group 1 Group 2
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Hypotheses in ANOVA

* Null Hypothesis: Random Sampling from Single
Distribution
— E.g. we draw multiple samples of some size

— What range of variance ratios among these samples would we

expect to see purely by chance?
— Assumed model: = KTt E

e ~ N(0,0°)

e Fixed Effects Model

— The alternative hypothesis is that there is a fixed effect
between the treatment groups (where I indicates group, and |

Indicates replicate within group) i) = b+ €
j(i) — i J

— Assumed model:
e; ~ N(0,0°)
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Some Definitions (for ANOVA Calculations)

Deviations from grand mean

— Individual data point from grand mean: Tij =T
— Squared deviation of point from grand mean: Sp = (wij — 5)2
— Sum of squared deviations from grand mean: SSp = Z(xi — 7)?
(¥}
Deviations of group mean from grand mean )
r; — T

— Deviation of group i mean from grand mean:
— Squared dev of group mean from grand mean:
— Sum of squared deviations of group means: SSo = Z Z(g—;i — 7)?

» Deviations from local group mean

— Deviation of individual point j (within group i) i) — T
from the group mean: I
— Squared deviation from group mean:

— Sum of squared deviations from group mean: Sy = Z Z(w & — )
72 7
v 5(9)

Sp = (zj4) — %:)°
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Simple ANOVA Example

Group

Grand Ave
Grand Var

Source

C TOTAL
GROUP
ERROR
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Value Group Ave

3
5
7
9

6
6.67

ANOVA
d.o.f.

3

1

2

4

o 0 A~

SS D=

SS
20.00
16.00

4.00

Squared
devs of point
from grand
ave

S

o~ o 0

20
SS G=

MS
6.67
16.00
2.00

Squared
devs of
group ave
from grand
ave

16
SS E =

8.00

Squared
devs of point
from group
ave

R R M

Pr>F

0.11



Nested Variance Structure

 Two different, independent sources of variation
— “within group” variance (o)
— “between group” variance (c,,°)

e Assumed model: =i =1+ Gi+ €0
G; ~ N(07 O-gg)
Ci(i) N(07 Ov?ug)

— Key difference from standard ANOVA:

* This does NOT postulate a fixed effect (mean offset)
between groups

e Rather, random group offset (still zero mean), the same for
all members within that group |
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Nested Variance Example (Same Data)

e Now — groups are
simply replicates (not
changing treatment)

e But... assume there
are two different

S - o I ° | sources of zero mean

3+ “Wa.. variances

e Goal — estimate these
two variances

Group 1 Group 2

i
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Estimating Variances — A Naive Attempt

« Within-group variance
— Use Error Mean Square from ANOVA:

2 _
+ Gy =20

 Between-group variance
— Use Group Mean Square from ANOVA:

\o
. cgg2 = 16.0 O$®
@Q‘
e Total variance
— Use CTOT Mean Square from ANOVA:
&Q‘

I III Manufacturing
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Where Do Nested Variance Structures Arise?

» Typically occur in batch or parallel
manufacturing processes

 Very common in semiconductor manufacturing

— multiple chips or die within a wafer,
multiple wafers within a lot,
multiple lots within a batch

— Physical causes of variation at each level are
typically different

e Qur Goal:

— Point estimates for each source of variation
— Confidence intervals for each variance

i
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Nested Structures

* |[tems within a group tend to be more similar to
each other:

— Measure film thickness on a wafer

e T(X,Y) ~ N(u, 62 ininwarer) & F€asonable model?

« E.g. arise due to uniformity of temperature, gas flows
within a particular deposition chamber

— Measure film thickness averages on multiple wafers

e T.oe~ N(, 62 toriomater) @ FEASONAblE Model?

« E.g. may arise due to run-to-run repeatability of the tool as
a whole

i
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Single Level Variance Structure

* Multiple measurements on same wafer

X; = p+ M,

Mi ~ N(O,O']Qw)

* M. Indicates measurement
— measurement location is randomly selected

— each measurement is [IND
* Independent & ldentically Normally Distributed
e Zero mean, variance = g%,

I III Manufacturing
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Two Level Variance Structure

* Multiple measurements on multiple wafers

Xij = p+ Wi+ M

W; ~ N(0,0%) for i=1---W
M'(i) ~ N(O,O']2\4) for j:1°°-M

J

« W, indicates wafer
— wafer selected at random from wafer group
— each wafer mean is assumed to be IIND as above

* M,; Indicates measurements within wafer |
— measurement location is randomly selected
— each measurement is [IND as above

I III Manufacturing
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Total Variance (for Individual Measurement)
* Variance components add
Var| X;;| = Var|u] + Var|W;| + Var|[M; ;|
0527 = agv + 0]2\4
— Individual variances are assumed independent

Note: this relationship did not hold
In naive attempt!

i
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Variance in Observed Averages

 Key ldea: the variance observed for the
wafer average will NOT be equal to the true
wafer to wafer variance, due to additional

measurement variance and sampling:

0.2
2 | M l.e., wafer average is inflated

O xr — 0'2
w — YW M by the measurement variance

e Thus, If we want to estimate the actual
wafer-to-wafer variance:

2 O g

Nir
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Derivation: Variance in Observed Averages

 Observed wafer average for wafer i:

B 1 M
W, = M;Xij = ZM+W+ (i)

M A
H M [ J(?)
7=1

e So variance in observed wafer averages:

_ 1
Var[W;] = Var|u] + Var[W;] + 7z M - Var[M;]
2
o
Tw =W g

i
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Note: Observed Total Variance is Always
Smaller than Estimated Total Variance

 We assume two independent sources of
variation are at work, so estimated total

variance Is: 9 9 9
O = 0w T 0

 The “observed” total variance has sampling
effects In it, making it smaller than actual
total variance:

2 _ (W —=1)-08 + W(M —1) - 0%, _ S5g
Tobserve d WM_l N_]_
— ‘UW/%— O\ < UW/%‘OAI

WM —1 WM —1
= 1
< <
IIIII Manufacturing 19



Back to Simple Nested Variance Example

2
Ouwg
o+ .
7T ° I
2
5T . .
3__ )

Group 1 Group 2

I III Manufacturing

« Within-group variance
01209 = 2.0

» Observed group-group variance
oz, = ((8—6)°+(6—4)°)/1
= 8.0

o Estimated actual group-

group variance

0.2

2 _ 2 _wg
099 o 09_9 2 \
. measurements
— 70 in each group

e Estimated total variance

2 2 2
o = Ugg—l—O'wg

= 9.0
20



Example: Resistivity across Multiple Wafers

= Wafer

~ Resistivity -
~ Measurement

47.85
1 46.48
47.68

SRR A
2 55.67
56.26

48.43
3 50.39
50.86

47.45
4 49.49
45.81

47.12
5 47.43
48.73

51.09
6 49.04
47.72

Figure by MIT OpenCourseWare.
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57
56
55
54
53
52
51 »
50 -
49 ‘ :
48
47 ¢
46
45

Wafer

Figure by MIT OpenCourseWare.

 Same process for all wafers
— Not introducing different ‘treatments”

 Three measurements (randomly chosen on
each wafer) of resistivity

Ref: Drain, p. 196 21



Example: Resistivity across Multiple Wafers (2)
e Nested variance ANOVA results from Drain

' thance Degrees vf Sum vf“ : e > r-_' e
:_NS'OIH‘C? = 'j - Freedom e Squares = F;Valuer. PF.PF - EgrorTerm >
Total 17 178.499361
Wafer 05 159.863028 |20.5873 | 0.000017 Error
Error 12 18.636333
- Varmtg&:Source _ ;;_]_i_‘l_e_;iii_'sguar.ie - ;__ Varmnce_ Com_panént Perce_n;ofTotal _
Total ﬂ 0.499962\ /11 69288\ 100.0000
Wafer ( 31.972606 ) ( 10.139859 ) 86.7182
Error \1.55302y \ 1.55302% 13.2818
Observed Estimated Figure by MIT OpenCourseWare.

e Based on “SAS PROC NESTED”

— What does it mean?

III__— How did he do that? ... See spreadsheet
II Manufacturing 22



Interval Estimates on Variance Components

.I/ericg-rgb_e Source _-L(_)we'lf Limit .- _'_ Point Estg’n-zgit_e SRR Uppe;' Limit
Total 5.83196 11.692887 47.5806
Wafer 4.27950 10.139859 45.9730
Error 0.88634 1.553028 3.56606

Figure by MIT OpenCourseWare.

e From Drain

— Error (site-to-site variance). use Chi-square distribution
e Claims to be 95% c.i., ... but table shows 90% c.li.

— Wafer (wafer-to-wafer variance):

* Not sure what relationship used for c.i. calculation by Drain
(SAS PROC NESTED). See spreadsheet for conservative
approach. (n _ 1)32 , (n - 1)32

< 7 <

2 > 0 = 3
Xa/2,n—1 X1—a/2,n—1

i
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Three Level Variance Structure

 Multiple measurements on multiple wafers in multiple lots

Li ~ N(0,07) for i=1---L
Wi ~ N(0,03) for j=1---W
Myujy ~ N(0,03) for k=1---M

* L, indicates lot
— |ot selected at random from set of lots
— each lot mean is assumed to be IIND as above

* W,; Indicates wafer J within lot |
* M, Indicates measurement k within wafer | within lot |

24
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Variance in Observed Averages, Three Levels

e As In the two level case, the observed
averages include lower level variances,
reduced by number of samples

— Above Is for a balanced sampling plan, with
equal number of wafers and measurements for
each lot

I III Manufacturing



Three Level Example

70 -

60 -

40 -

30k

1 2 3 4 5 6 7 8 9 10 11 12
LOT

e 11 Lots
e« 3 Wafers within each lot

e 2 Measurements within each wafer

I III Manufacturing

Figure by MIT OpenCourseWare.

Ref: Drain, p. 198

26



Three Level Analysis — Point Estimates

' Varza‘nce D'egreesvf Sum 0f > e
= FH - E =
Srce Foeotom Squares . Flaliep-F St
Total 65 4025.487062
Lot 10 1453.333712 | 1.27299] 0.303499 Wafer
Wafer 22 2511.673500 |62.2936 | 0.000000 Error
Error 33 60.479850
Variance Source ﬁe;";i s;,m ~ Variance Component pe;ce',;; ;f'To“tal_
Total 61.930570 63.194249 100.0000
Lot 145.333371 5.194399 8.2197
Wafer 114.166977 56.167127 88.8801
Error 15832723 1.832723 2.9000

e See spreadsheet example.
Several tricky parts!

I III Manufacturing

Figure by MIT OpenCourseWare.
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Three Level Analysis — Interval Estimates

2 I&mqrgc?:Sourca = HL:)we’r Ltmn‘_ H_‘F Point Estzmg;e e : ng_e;l,ilntt =
Total 444215 63.194249 127.324
Lot ‘ -94.8509 ) 5.194399 222.068
Wafer 33.2254 56.167127 113.423
Error 1.19231 1.832723 37535

Figure by MIT OpenCourseWare.

« “Negative” variance — set to lower bound of zero

I III Manufacturing



Outer vs. Inner Levels of Variance

 When we observe/calculate an outer (higher)
level average, what most strongly affects this?

2 2
2|OWI0M

2
LTOLT W T W

— With appreciable number of wafers and
measurements, the inner levels of variance are
“averaged away”

i
I II Manufacturing
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Why worry about o2 ?

Often make decisions based on estimates for
the true outer-level average

One approach:
— Calculate/observe multiple averages empirically

— Use these to estimate variance in the mean
e E.g. confidence interval on average
j_za/Q'Uf < p < 'f—|_zoz/2'0_£

e Or with small number of samples
i’_toz/2'853 < p < i'—|_to¢/2°553

8N

e So0... want sampling plans to minimize o

i
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Implication: Sampling in Nested Cases

e Suppose we have a limited set of resources
(e.g. lots, wafers, measurement), or given cost
constraints

— Use variance estimates to decide how to nest the
measurements

— If estimating an outer level value, e.g. lot average,
we can often improve variance estimate by
replicating at the outer rather than inner levels (i.e.
Increase W rather than M)

O

N
|
Q

M~

I III Manufacturing
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Summary

e Nested Variance Structures

— When have sets of measurements “within” another
spatial construct

— Assumes independent sources of variance

e Variance Components
— Unwrap variances from inside toward outside
— Point and interval estimates possible

e Implications in sampling plan design

— Allocate measurements, replications where most
valuable for variance being estimated

i
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