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C Contact MechanicsI

The theory developed by Hertz in 1880 remains the foundation for most contact problems
encountered in engineering. It applies to normal contact between two elastic solids that are
smooth and can be described locally with orthogonal radii of curvature such as a toroid.
Further, the size of the actual contact area must be small compared to the dimensions of
each body and to the radii of curvature. Hertz made the assumption based on observations
that the contact area is elliptical in shape for such three-dimensional bodies. The equations
simplify when the contact area is circular such as with spheres in contact. At extremely
elliptical contact, the contact area is assumed to have constant width over the length of
contact such as between parallel cylinders. The first three sections present the Hertz
equations for these distinct cases. In addition, Section C.4 presents the equations for a
sphere contacting a conical socket. Hertz theory does not account for tangential forces that
may develop in applications where the surfaces slide or carry traction. Extensions to Hertz
theory approximate this behavior to reasonable accuracy. Section C.5 presents the more
useful equations. The final section C.6 contains MathcadÔ documents that implement these

equations for computer analysis.

The Hertz equations are important in the engineering of kinematic couplings
particularly if the loads carried are relatively high. For a particular choice of material and
contact geometry, the pertinent calculations reduce to families of curves that are convenient
for sizing purposes. The typical material used is hardened bearing steel, for example,
52100 steel or 440C stainless steel heat treated to 58-62 Rockwell C. A typical contact
geometry consists of a sphere against a cylindrical groove, for example, one side of a
gothic arch. The graphs that follow use the elastic properties for steel and are scaled relative
to the radius of the ball Rball rather than its diameter. Figure C-1 shows the relationship

between the load P and the maximum shear stress t that occurs just below the surface. The

allowable shear strength is approximately 58% the allowable tensile strength with t = 150

ksi being reasonable for the steels mentioned. The curves show the positive effect of
curvature matching indicated by the ratio of ball radius to groove radius approaching one. A
ratio of zero indicates that the groove radius is flat with infinite radius. Figure C-2 shows
the normal displacement d versus P and Figure C-3 shows the normal stiffness k versus P.

Greater load capacity and stiffness are possible by spreading the load along a line of
contact, for example, with a sphere and conical socket. Three spheres and three sockets
with either the spheres or the sockets supported on radial-motion blade flexures duplicate
the kinematics of a three-vee coupling. The graphs that follow use the elastic properties for
steel and the optimal cone angle of 45û with respect to the centerline. Figure C-4 shows the

                                                
I The principal reference for this chapter is Contact Mechanics by [Johnson, 1985].
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relationship between the axial load P and the shear stress t that occurs just below the

surface of the contact circle. Figure C-5 shows the axial displacement d versus P and

Figure C-6 shows the axial stiffness k versus P.
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Figure C-1  Shear stress t versus the load P for a ball against a cylindrical groove. Use this graph to
determine t, P or Rball from the other two.
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Figure C-2 Normal displacement d versus the load P for a ball against a cylindrical groove.
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Figure C-3 Normal stiffness k versus the load P for a ball against a cylindrical groove.
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Figure C-4  Shear stress t versus the axial load P for a ball in a conical socket. Use this graph to
determine t, P or Rball from the other two.
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Figure C-5 Axial displacement d versus the axial load P for a ball in a conical socket.
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Figure C-6 Axial stiffness k versus the axial load P for a ball in a conical socket.

Applications with unusual geometry or with materials that deviate significantly from
the elastic properties of steel will require analysis using the appropriate Hertz equations
directly. This is not difficult given the explanations that follow and the MathcadÔ

documents that implement these equations for computer analysis.
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C.1 Circular Contact
A circular contact area forms when two spheres come into contact or when two cylinders of
equal radius contact with 90û crossed axes. Both are special cases of elliptical contact where
symmetry simplifies the equations. It is instructive to consider circular contact first to
present the main concepts without undo complication.

Equations C.1 through C.8 are the Hertz equations for circular contact. The contact
modulus (C.1) expresses the elastic properties of both bodies 1 and 2 effectively as a series
combination of springs since stiffness is proportional to the elastic modulus for plain strain.
The relative radius (C.2) expresses a summation of curvatures (or inverse radii). Note that
curvature is positive for a convex surface and negative for a concave surface. Either radius
may be positive or negative so long as the relative radius is positive since it represents an
equivalent sphere in contact with a plane. Quite different sets of contacting surfaces behave
identically if they have identical contact modulii and relative radii.
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The size of the circular contact (C.3) increases weakly with increasing load P and
relative radius but decreases weakly with increasing contact modulus. The maximum
pressure (C.4) is 1.5 times the mean pressure and occurs at the center of the contact area.
Both surfaces experience the same pressure profile, which is hemispherical going to zero of
course at r = c. Due to hydrostatic stress in the contact region, materials can endure
substantially higher pressure than their tensile yield strength. Ductile materials first yield at
the point of maximum shear stress (C.5) just below the surface. The allowable shear
strength is approximately 58% the allowable tensile strength. Brittle materials fail by
fracture at the edge of the contact where the tensile stress is maximum (C.6).

Radius of Contact Circle c
PR

E
c

c
=

æ

è
ç

ö

ø
÷

3
4

1

3
(C.3)

Maximum Pressure p
P

c

PE

R
c

c
= =

æ

è
ç

ö

ø
÷

3

2

1 6
2

2

2

1

3

p p
(C.4)

Maximum Shear Stress t = =0 31 0 48. .p z cat (C.5)
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The normal displacement (C.7) refers to the approach of distant points on the two
bodies due primarily to deflection in the region of contact. It is obtained by integrating
strain from the contact point to distant points in the bodies. The strain goes rapidly to zero
thus allowing an improper integral to be bounded. The normal stiffness (C.8) is obtained
by differentiating the deflection with respect to load to get compliance, then inverting.
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C.2 Elliptical Contact
An elliptical contact area forms when two three-dimensional bodies, each described locally
with orthogonal radii of curvature, come into contact. In addition, the orthogonal
coordinate system of one body may be rotated relative to the other by an arbitrary angle a .

Any radius may be positive (convex) or negative (concave) so long as all three relative radii
(C.9) are positive. To first order, Rc represents an equivalent sphere in contact with a
plane, while Ra and Rb represent an equivalent toroid in contact with a plane. The contact

modulus remains unchanged from circular contact (C.1). Quite different sets of contacting
surfaces behave identically if they have identical contact modulii and relative radii.

Relative Radii R R Rc a b= (C.9)
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The approximate expression for the eccentricity of the contact ellipse (C.10) is
sufficient for practical geometries; however, the full solution is implemented in Section
C.6. The radius of an equivalent circular contact (C.11) contains a correction factor F1 that

gradually decreases from one as the contact becomes more elliptical. The major and minor
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radii of the contact ellipse (C.12) follow from the eccentricity and the equivalent radius.
The maximum pressure (C.13) differs from circular contact only in that the pressure profile
is semiellipsoidal going to zero of course at the edge of the contact ellipse. The maximum
shear stress and depth below the surface (C.14) are very similar to circular contact. The
equations provided are curve fits to Table 4.1 in [Johnson, 1985]. The radially oriented
tensile stress at the major and minor contact radii (C.15) becomes increasingly different
from one another (and the tensile stress for circular contact) as the contact becomes more
elliptical. The tensile stress at the major radius sa is maximum.
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The normal displacement (C.16) and the normal stiffness (C.17) differ from
circular contact only by the correction factors F1 and F2. Equation C.18 provides curve fits

to the exact values as calculated in Section C.6.
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C.3 Line Contact
The contact between parallel cylinders away from end effects is well represented by two-
dimensional Hertz theory. Then the contact area is assumed to have constant width 2b over
the length of contact 2a. These symbols are chosen to be consistent with elliptical contact;
however to be consistent with the references, P is the line load (load per length of contact)
rather than the actual load. The contact modulus (C.1) and the relative radius (C.2) remain
the same as circular contact. The remaining Hertz equations for line contact are similar to
but somewhat different from those of elliptical contact. The half width of contact (C.19)
varies faster with load, 1/2 versus 1/3, but the contact area varies slower with load, 1/2
versus 2/3. The maximum pressure (C.20) is somewhat closer to the mean pressure, 4/p
versus 3/2. The maximum shear stress (C.21) is nearly the same ratio to the maximum
pressure but occurs deeper. There is no tensile stress for line contact.
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Maximum Shear Stress t = =0 30 0 78. .p z bat (C.21)

The normal displacement (C.22) and the normal stiffness (C.23) now depend on
the distance that the reference points d1 and d2 are from the contact point. This occurs

because two-dimensional theory only allows the load to spread out in one direction. These
expressions are approximate if the elastic properties are different between the two bodies;
however, the exact expressions are implemented in Section C.6.
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C.4 Sphere and Cone Contact
The theoretical contact between a sphere and a conical socket forms a circle whose radius
depends on the radius of the sphere R and the cone angle q with respect to the axis. Hertz
theory for line contact may be extended to sphere and cone contact rather simply by
assuming the line load (C.24) consists of a constant term due to the axial load fa and a
sinusoidal variation around the circle due to the radial load fr. The maximum and minimum

line loads occur at f = 0 and p radians, respectfully. Then maximum and minimum values
of contact width, pressure and so forth are simple to calculate using the Hertz equations for
line contact. The axial stiffness (C.25) and the radial stiffness (C.26) come from integrating
the local contact stiffness (reflected to the proper angle) around the circle. Since the local
contact stiffness does not usually change significantly around the circle, it is adequate to
use the mean value to simplify the integration.
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C.5 Tangential Loading of an Elliptical Contact
The normal pressure that exists between two three-dimensional bodies in contact has a
semiellipsoidal profile that is maximum at the center and zero at the boundary of the contact
area. It is reasonable to expect the same profile to exist for surface traction if the two bodies
also slide while held in contact. The traction in this case is related to the normal pressure
through the coefficient of friction. If it were possible to perfectly adhere the surfaces in
some way, then a tangential force would cause the reciprocal profile to develop over the
contact. In this case the traction is minimum at the center and rises to infinity along the
edge. This is plausible behavior since the joint is equivalent to a very deep, sharp crack.
The friction connection obviously cannot support infinite traction where the normal force is
zero. A region of slip forms at the edge of contact and extends toward the center until the
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normal pressure is sufficient to carry the traction by friction.I As the tangential force
increases, the slip region encroaches further into the adhered region until nothing remains
to prevent sliding, and the tangential stiffness goes to zero. The useful tangential constraint
device typically operates well below the point of incipient sliding.

This theory has practical applications in the design of friction drives for precision
machines and also in kinematic couplings where frictional constraints act to stiffen the
coupling and the flexible modes of the supported object. Slip between two elastic bodies is
a dynamic process that requires something to change. This section treats the two most
practical possibilities: when the contact is stationary and the tangential force varies, or when
the force is constant and the contact moves across rolling bodies.II For example, slip that
occurs from an oscillating tangential force results in a hysteresis loop in the force-
displacement curve. Slip that occurs between rolling bodies in contact results in a small
differential velocity called creep in the literature. These nonideal behaviors are usually very
small and can be estimated with reasonable accuracy using the equations provided.

C.5.1 Stationary Elliptical Contact, Variable Tangential Force

A tangential force applied to a stationary, elliptical contact produces a relative tangential
displacement governed principally by elastic deformation in the contact. Typically small
inelastic behavior results from slip that always accompanies the elastic deformation. In the
normal direction, all the Hertz equations for elliptical contact still apply. Since traction at the
surface produces shear stress in the material, it is convenient to define the contact shear
modulus (C.27) to simplify the main equations. The transition from an adhered region to a
slip region occurs theoretically on an ellipse that is smaller in size but with the same
proportions as the contact ellipse. The transition ellipse (C.28) shrinks in size as the
tangential force increases until the point of incipient sliding occurs when T = mP. The
subscript in the equation indicates that the traction profile may have more than one
transition depending on the history of the tangential force. The tangential displacement
between distant points (C.29) is valid when there is one transition in the traction profile.
This occurs if the contact initially has zero traction and the tangential force increases
monotonically. Corresponding to this condition is the tangential stiffness (C.30), which
applies only when the force increases. A decreasing force causes the entire contact to
momentarily adhere then establish a second transition ellipse outside the first.
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I It is customary to distinguish between the terms slip and sliding. Slip refers to small relative
displacement resulting from differing strain fields in the two contacting surfaces. Sliding is arbitrarily large
movement between two contacting surfaces.
II [Mindlin and Deresiewicz, 1953] treat combinations of varying normal and tangential force.
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The equation for the second transition ellipse (C.31) depends on the maximum
tangential force T1 and the relaxed or reversed tangential force T2. If the magnitude of T2

becomes equal to or greater than T1, then the second transition ellipse encroaches on the

first and effectively eliminates its record. It is possible in theory to have several transitions
if there are several reversals and each is smaller than the previous one. The tangential
displacement for a decreasing tangential force (C.32) has an added term to account for the
second transition. Setting T to zero gives the half width of the hysteresis loop between ±T1.
An approximate expression of the hysteresis half width (C.33) is primarily quadratic in T1.

The tangential stiffness for a decreasing tangential force (C.34) is momentarily maximum,
as expected, then it decreases as the tangential force relaxes. Notice that all the equations
for displacement and stiffness share the correction factor F. This factor accounts for the

ellipticity of the contact and whether the tangential force is parallel to the major radius a or
the minor radius b. The approximate correction factor (C.35) provides good agreement
with the more complicated exact expressions plotted in Figure C-7. The exact expressions
are used in Section C.6.
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Figure C-7  Correction factors for elliptical contact calculated for n  = 0.3. The tangential force may be
parallel with the major radius a or the minor radius b.

The following references present this theory in greater detail [Mindlin, 1949],
[Mindlin and Deresiewicz, 1953], [Deresiewicz, 1957]. One reference [Mindlin, et al.,
1951] provides experimental data that agrees reasonably well with theory except for the
energy dissipation for low-amplitude cycles. The theory predicts that the energy loss is
cubic in force amplitude whereas the experiment shows quadratic behavior.

C.5.2 Rolling Circular Contact, Constant Tangential Force

The equations for slip in a rolling circular contact due to a constant tangential force are very
similar to those for stationary contact. This is understandable since the theory developed by
[Johnson, 1958] assumes that the transition between the adhered region and the slip region
is the same proportion described in Equation C.28. He further assumes that the adhered
region is tangent to the leading edge of contact whether the tangential force is parallel to or
perpendicular to the direction of travel. This is intuitive behavior since the material entering
the contact area is in a relaxed state and acquires increasing traction until it exceeds the
threshold for slip towards the trailing edge of contact. A numerical approach developed by
[Kalker, 1966] predicts a lemon-shaped adhered region bounded by the leading edge of the
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contact circle and an arc shifted from the trailing edge. The slip region then appears as a
crescent. Although the numerical approach closely matches observed results, JohnsonÕs
theory yields simple equations and reasonable estimates of creep (the ratio of the slip
velocity to the rolling-contact velocity).

The direction of the tangential force governs the direction of slip but it plays a minor
role in the magnitude of the slip ratio. Johnson uses the term longitudinal to indicate that the
tangential force is in the direction of rolling along the x-axis. A transverse tangential force
is in the y-direction. As before, it is convenient to group the elastic properties of both
bodies into one. The longitudinal and transverse shear modulii (C.36 and C.37) differ only
about ±10 percent from the contact shear modulus (C.27). Given the approximate nature of
this theory, it would be adequate to use the contact shear modulus (C.27) for any direction
of tangential force. Other than accounting for differences in directions, the longitudinal and
transverse slip ratios (C.38 and C.39) are identical.
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Although this theory was developed for circular contact, its similarity to stationary
contact suggests that it could be extended to elliptical contact using the same correction
factor F. The use of Fa or Fb and particularly whether to use c2 = a b or a2 in the

denominator is strictly conjecture. The recommendation is to use a b when rolling is along
the minor axis, and conversely to use a2 when rolling is along the major axis. The rationale
is that one factor of a belongs with F and that the slip ratio scales inversely with the contact

width in the direction of rolling, either a or b. The choice of Fa or Fb depends solely on

whether the tangential force is along the major or minor axis. The use of longitudinal or
transverse shear modulus is optional.

Experimental work by [Johnson, 1958] shows reasonable agreement with his
theory for rolling contact of a sphere on a plane. The agreement is good for low levels of
slip but it underestimates creep by 20 to 30 percent for T > mP/2.




