
2.71 Optics	 Final Exam Solutions Spring ‘09


1. Consider the following system.


(a) If we position an on-axis point source at the center of the object plane (front 
focal plane of L1), a collimated ray bundle will emerge to the right of L1 and 
its diameter is set by S1; therefore, S1 is the aperture stop (A.S.). Similarly, S2 
limits the lateral extent of an imaged object (consider an off-axis point source) 
and thus, it’s our field stop (F.S.). 

(b) The entrance pupil is the image of the A.S. by the preceding optical components. 
To find its location we use the imaging condition, 
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So the entrance pupil is located at 2f1 to the right of L1. To find its radius, we 
compute the lateral magnification, 
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The exit window is the same as S2. • 

The entrance window is the image of S2 through the preceding optical ele­• 
ments (i.e. combination of L1 and L2). It is f1 to the left of L1. 
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(c) Solution:


The numerical aperture is: 
tan α ≈ α ≈ sin α ≈ NA ≈ a1 

f1 

2Xs 2 f1a2 2 a2
The field of view is: FOV = 2β = = = 

3f1 3 f1f2 3 f2 

(d) The location of S1 limits the FOV because of the requirement for the C.R. to 
go through the center of the aperture stop (A.S.). It can be seen that the least 
restrictive A.S. location is at the Fourier plane (f1 to the right of L1 f2 to⇐⇒ 
the left of L2). 

2. Solution: 
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So S1 f 
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(c) Solution:


R 
NA ≈ sin θ ≈ tan θ = 0.1 = 

So 
R = 1.2 cm Diameter of the lens: 2.4 cm→ 

(d)	 λ = 1µm 

Rayleigh resolution = 1.22 λ = (1.22) 1µm = 12.2µm
(NA) (0.1) 

48(e) To achieve |MT | = 1, So = Si = 2f → So = Si = 
5 cm 

3. Michelson Interferometer 

When the mirror #2 is tilted by θ,

the reflected light is rotated by 2θ.


Unfolding the optical paths, we have this situation:


At the observation plane, 

λE1(x) = e i 
2π (z0+2z1+zc) 

E2(x) = e i 
2π (z0+z2)e i 

2
λ
π {cos 2θ(z2+zc)+sin 2θx}

λ 

Δφ = �	� ) + sin 2θx − ��z0 + z2 + cos 2θ(z2 + zc z0 − 2z1 − zc 

= z2(1 + cos 2θ) − 2z1 + zc(cos 2θ − 1) + sin 2θx 

= 2z2 cos 
2 θ − 2z1 − 2zc sin

2 θ + sin 2θx 

= 2(cos2 θz2 − sin2 θzc − z1) + sin 2θx 
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Note that if θ = 0, Δφ = 2(z2 − z1), which only depends on z1 and z2.


Neglecting attenuation due to reflection, we obtain the field as E(x) = E1(x) + E2(x).

The intensity of the interference is


I(x) = |E(x)|2 = |E1�(x)|2 + �|E2(x)|2 + 2Re{E1 
∗E2}


2π

= 1 + 1 + 2 cos Δφ 

λ 
2π � �

= 2 1 + cos sin 2θx + 2(cos2 θz2 − sin2 θzc − z1)
λ 

The normalized intensity is: 

∴ The period of the fringe is dependent on θ. If θ increases, the period decreases (finer 
fringes). Due to the phase shift by 2 (cos2 θz2 − sin2 θzc − z1), the whole fringe shifts λ 
as z1 and z2 change. 

4. Consider the 4-f system shown below, 
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(a) The pupil mask can be implemented by placing two pinholes (small apertures), 
one centered with respect to the optical axis and the second one at 1 cm off-axis. 
The 2nd pinhole is phase delayed by a piece of glass of thickness t, where 

2π 
φ = π = t(1.5 − 1) t = λ 

λ 
⇒ 

(b) The input transparency is
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At the Fourier plane, 
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 λf λf
q


Gin(x
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 = 1
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 Λ

q=−∞ 

After the pupil mask, only the 0th and +1 orders pass. The +1 order gets phase 
delayed by eiπ = −1. 
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+
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The contrast is v = 0.906 = π = .1 1+ 4 + π2 

4 π2 

5. (a) To compute the OTF, we first need the ATF: 
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u1 = 
x�� 

= 
1cm 

= 0.2µm−1 = 200mm−1 

λf 0.5µm × 10cm 
est. 

δu = 
δx�� 0.2cm 

= 0.025µm−1 = 25mm−2 

λf 
≈ 

0.5µm × 10cm 

H(u) = H(u) ⊗ H(u) (autocorrelation) � � � � � �� � � � � �� 

= rect 
u� 

− rect 
u� − u1 

rect 
u� − u − rect 

u� − u1 − u 
du� 

δu δu δu δu 

� � � � � 

= rect 
u� 

rect 
u� − u 

du� 
δu δu 

→ 

� � � � � 

rect 
u� 

− rect 
u� − u1 − u 

du�− 
δu δu 

→ 

� � � � � 

rect 
u� − u1 

rect 
u� − u 

du�− 
δu δu 

→ 

� � � � � 

+ rect 
u� − u1 

rect 
u� − u1 − u 

du� 
δu δu 

→ 
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So the resultant OTF and MTF are (after normalization):


(b) Only the DC and the ± 1st harmonics at u = ±200mm−1 (period = 5µm), i.e. 

1 1 1 2πx�

I(x�) = 

2 
− 

2 
× 

π 
× 2 cos 

5µm

2πx� 

= DC term − H(200mm−2) × 1st harmonic × 2 cos 
5µm 

(c) Solution: 

F−→ sinc2(δux), so the iPSF is: 

� � � � �� 
x x= sinc2 

40µm × 1 − cos 2π 
5µm 
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