
Solution: The first system is the usual single-lens imaging system, so it satisfies:


1 1 1 
imaging condition: 

� � 

+ = 
S1 S2 f 

S2
lateral magnification: m = −

S1 

where, from the way the lens is described, 

1 1 1 2 
= (n

f g − 1) 
R 

− = (n
−R g − 1)

R 

The second system is best modeled anew using the matrix formulation for ray propa­
gation: 
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2.71/2.710 Optics Practice Exam 3 - Solutions Spring ‘09


1. A thin bi-convex lens with the same absolute curvature on both faces is used in the two 
imaging systems shown below. In the first, both object and image are in air, whereas 
in the second the object is “immersed” in a material of index n0 < ng, where ng is the 
index of the glass used to make the lens. Compare the two imaging systems in terms 
of imaging condition and magnification. 



� � 

� � � �� 1 ��   
α 1 −ng 
img 1 0 1 

= 
− −R − ng −n0

��
1 0 

 

��
n0 αobj R

ximg S2
� 1 0 1 0 1 S1 1 � n xobj 

 0

    

�
1 0 

��
1 − 1

��
1 0 f

��
n0 α� obj =

S S1 � 2
� 1 0 1 

 � 1 
n xobj 
0 

 S1 1   

�
1  

 α=
− 

n0f � −
f � n0 obj 

� S1 S1S2
� S2

�
S + −  1 − x  2 n0 n0f � f � 

�
obj

�
1 n

 0 + 1 2 
where = n  	 (note f � > f)

f � g −
2 R 

∂ximg S1 S1S
� n 


Imaging condition: = 0 ⇒ 0 1 1
 S + 2

2
�  − = 0 ⇒ + =

∂αobj n0 n0f � S1 S 

2
� f �

Assuming the imaging condition is satisfied, the system equation becomes: � � �  S1 1 

=

�   
αimg 1 − 

n0f � −
f � 

�
n0 αobj 

ximg 0 1 − S2
�

f � xobj 

�

 ximg S2
� n S⇒ 0 2

�
 m� = = 1 − = − (from the imaging condition) 

xobj f � S1 

2. In the configuration below, lenses L1 and L2 are identical with focal length	 f , and 
we consider them to be infinite aperture. The system is illuminated coherently by an 
on-axis plane wave. 
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(a) Write an expression for the field at x� in terms of the thin complex transparencies 
g1, g2.

Solution: The first part (to the left of g2(x��)) is a Fourier-transforming system:


� � � � 

The second part (to the right of g2) is a single-lens imaging system with unit 
magnification: 

π  
  x��

The field at 2 2
x� = exp i (x� + y� ) G1 g

 2(x
��)

2λf λf 

(Note that the first exponential term could have been omitted...) 

(b) Consider the specific case with f = 10 cm and g1, g2 defined as: 
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If λ = 1µm, derive and sketch the intensity at the output plane x�.


Solution: The binary grating has fundamental period Λ = 20µm and duty cycle

50%, i.e. it is of the form:


 
1 
� � 

2πx 
��

1 �∞    n 
=  x 

g1(x) = 1 + sgn cos sinc ei 2πΛ

2 Λ 2
 

 

�
2 

�
� n=−∞

    x�� � 1 �∞
G1 = sinc 

λf 2
n=−∞ 

�n �
δ

�
x�� 1 

 
2 λf 

− 
Λ 

  

�
�  

Mind the 
��
coordinates!

�
 

λf 1µm × 20cm 
Since = = 1 cm, the g2 transparency only lets orders −1, 0, +1 

Λ 20µm 
to pass through, therefore the field (or intensity) at the output plane is three 
bright spots. 
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Example: OTF of the Zernicke phase mask

The thin phase transparency whose schematic is given below is placed at the Fourier
plane of a unit magnification telescope with focal length f = 10cm. What is the optical
transfer function for quasi–monochromatic illumination at wavelength λ = 1µm?

z

!=0.2cm
0.5µm

glass,

" =1.5

#=1cm

T2 air

opaque opaque

x”

Solution: Since b/(λf) = 100 cycles/mm and a/(λf) = 20 cycles/mm, and 2π (1.5− 1.0)×
0.5µm/λ = π/2, the Amplitude Transfer Function (ATF) vs. spatial frequency u is

T (u) = rect
( u u

+
100

) (
eiπ/2 − 1

)
rect

(
,

20

)
(1)

whose real and imaginary parts are plotted below.
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The Optical Transfer Function (OTF) is the autocorrelation of the ATF, and the
easiest way to compute it is as follows. First, we obtain the Fourier transform t(x) of
the ATF as

t(x) = 100sinc (100x) + 20
(
eiπ/2 − 1

)
sinc (20x) . (2)

The Fourier transform of the OTF is the modulus–squared of t(x), i.e.

|t (x)|2 = 104sinc2 (100x) + 800sinc2 (20x)− 4× 103sinc (100x) sinc (20x) . (3)
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The inverse Fourier transform of the first two terms is easy, yielding triangular functions 
of full–widths 200 and 40, respectively. The inverse Fourier transform of the third term 
is computed as the convolution of two rect’s of width 100 and 20. Some thought will 
convince you that this convolution equals the “truncated triangle” function shown 
below normalized to 1. 
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Summing the three inverse Fourier transforms with their appropriate weights and 
normalizing the DC value to 1, we finally obtain the OTF as shown below. 
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The same result may be obtained by directly computing the autocorrelation of t(u) 
in the frequency domain, but that would have been much more tedious. 

You may have recognized T (u) as a Zernicke phase mask, which is used in mi­
croscopy for “phase–contrast imaging,” i.e. obtaining intensity images of phase fea­
tures in a transparent object. Some thought will convince you that phase contrast 
results from the depression in the OTF at intermediate frequencies which acts “sort– 
of” like a derivative, or better yet like a Hilbert transform. (Hilbert transform is an 
engine that converts a cosine to a sine, in other words introduces π/2 phase shift.) 
This particular phase mask is not so good because a is too large—ideally, a should be 
as small as possible to obtain the Hilbert transform effect in as large a fraction of the 
admissible bandwidth as possible! 
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4. Goodman, 6-10


1 1 1 
Solution: The imaging condition is + = . We’re given S1 = 2f S2 = 2f 

S1 S2 f 
⇒ 

Limitation on coherent on-axis illumination:


1 R λS1 1µm × 20cm 
< R > = = 2cm 

Λ λS1 
⇒ 

Λ 10µm 

Limitation on coherent off-axis (at angle θ0) illumination: 
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� � � � � � ��


����
 ����

� � � � � � ��


1 2R 
< R > 1cm 

Λ λS1 
⇒ 

Limitation on incoherent illumination: 

1 2R 
Λ 

< 
λS1 

⇒ R > 1cm 

5. Calculate and sketch the Fourier transform F(u) of the function


x 2πx 2πx 
f(x) = sinc cos + cos 

b Λ1 Λ2 

Assume that the following condition holds: 

1 1 1

b 
�
 , ,

Λ1 Λ2 

1 1

Λ1 

−

Λ2 

Solution: Space domain


x 2πx 2πx 
f(x) = sinc cos + cos 

b Λ1 Λ2 
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Frequency (Fourier) domain 

� � � � � � �� 
x 2πx 2πx F(u) = F{sinc 
b 

} ⊗ F cos 
Λ1 

+ cos 
Λ2� � � � � �� � � � � ��� 

1 1 1 1 1 1 
= brect(bu) ⊗ δ u + + δ u − + δ u + + δ u −

2 Λ1 Λ1 2 Λ2 Λ2 

(Note: we assumed Λ2 < Λ1 for the plots) 
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2π 

I(x) = | exp   (i(kx sin θ + kz cos θ)) + exp (i(−kx sin θ + kz cos θ)) |2 k

  

�
 = 

λ 

�
 2πx λ 

= |2 cos(kx sin θ)|2 = 2[1 + cos(2kx sin θ)] = 4 

�
1 + cos 

Λ 

�
where Λ = 

2 sin θ 

ii. Two spherical (or cylindrical) waves originating at relative distance x0, as in 
Young’s interference experiment with two pinholes (or slits): 

Recall the sifting theorem: h(x) ⊗ δ(x − x0) = h(x − x0) � � � �� � � �� � � �� � � ��� 
∴ F(u) = 

2 
b rect b u − 

Λ
1 
1 

+ rect b u + 
Λ
1 
1 

+ rect b u − 
Λ
1 
2 

+ rect b u + 
Λ
1 
2 

6. A very large observation screen (e.g., a blank piece of paper) is placed in the path of 
a monochromatic light beam (wavelength λ). A sinusoidal interference pattern of the 
form: � � 

2πx 
I(x) = I0 1 + cos 

Λ 

is observed on the screen, where I0 is a constant with units of optical intensity, Λ 
is a constant with units of distance, and x is a distance coordinate measured on the 
observation screen. 

(a) Describe quantitatively two alternative optical fields that could have led to the 
same measurement on the observation screen.


Solution: We have seen two occasions of sinusoidal interference patterns arising

from optical fields.


i. Two plane waves at angle θ with respect to the axis: 
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�� � � � � � � � �
 ���

 
 



 


�

����


 
�� ���� 
 
� �  
 


� � ��



��
����


�� � ����
 �
 ��


2 
exp i2π z (x − x0 )2 

 + y2 exp i2π z (x + x0 )2 + y2 

I(x) =
 λ exp iπ 2 + λ exp iπ 2 

iλz
 λz	 iλz
 λz 

 2 
1
 x2 + (x0 )2  2x(x0 ) x2 + (x0 )2 + 2x(x0 )

=
 exp
 iπ 2 −
2 + exp iπ 2 2 

(λz)2 λz
 λz 
1
 πxx 2


  0 2 2πxx
= 2 cos
 =
 1 + cos
 0

(λz)2 λz
 (λz)2 λz

2 2πx	 λz 

= 1 + cos	 where Λ = 
(λz)2 Λ	 x0 

(b) Describe an experimental procedure by which we can determine which one of the 
two alternative fields is illuminating the observation screen.


Solution: In case (i), the interference pattern is independent of z (i.e. the location

of the observation screen), unlike case (ii). Therefore, by moving the screen in

the longitudinal direction we can discriminate between the two cases.


7. Figure	 3 below shows the schematic diagram of a simple grating spectrometer. It 
consists of a sinusoidal amplitude grating of period Λ and lateral size (aperture) a 
followed by a lens of focal length f and sufficiently large aperture. To analyze this 
spectrometer, we will assume that it is illuminated from the left in spatially coherent 
fashion by two plane waves on-axis. One of the plane waves is at wavelength λ and 
the other is at wavelength λ +Δλ, where |Δλ| � λ. (The two plane waves at different 
wavelengths are mutually incoherent.) Since the two colors are diffracted by the grating 
to slightly different angles, the goal of this system is to produce two adjacent but 
sufficiently well separated bright spots at the output plane, one for each color. 
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The lens aperture A must admit the full size of the ±1st diffraction order at the 
longest wavelength, i.e. 

A a λ λf 
> + · f ⇒ A > a + 2 

2 2 Λ Λ 

(b) What is the maximum power efficiency that this spectrometer can achieve? 

Solution: Since it’s an amplitude grating, its maximum efficiency at full contrast 
is 1 

 . (See Goodman, eq. 4.37, p. 82.)
16

10 

(a) Estimate the minimum aperture size of the lens so that it does not impair the 
operation of the spectrometer.


Solution: The diffraction angle of light at color λ diffracted by a grating of period

Λ is λ/Λ. Therefore, the largest diffraction angle is at the red end of the spectrum

(longest wavelength).




(c) Show that a condition for the two color spots to be “sufficiently well separated” 
is: 

λ a 
< 

|Δλ| Λ 

This result is often stated in spectroscopy books as follows: The resolving power 
of a grating spectrometer, defined as the ratio of the mean wavelength λ to the 
spectral resolution |Δλ|, equals the number of periods in the grating. 

Solution: Consider the two closely-spaced wavelengths λ, λ +Δλ, particularly the 
+1st diffraction order for each. 

The lens focuses each color to a sinc2-like spot (in intensity) where the full width 
of the sinc (main lobe) is: 

λf 
for λ, 

(λ + Δλ)f 
for λ + Δλ 

a a 

and the spot locations are: 

λf 
Λ 

for λ, 
(λ + Δλ)f 

Λ 
for λ + Δλ 

The two color spots are “well resolved” if their spacing exceeds the main lobe size.
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Δλf λf (λ +Δλ)f λf 
> + ≈ (since a 

Λ 2a 2a a 
� Λ) 

λ a ⇒ < = # grooves in the grating 
Δλ Λ 

8. Consider the optical system shown in Figure 1, where lenses L1, L2 are identical with 
focal length f and half-aperture a. A thin-transparency object is placed 2f to the left 
of L1. 

(a) Where is the image formed? Use geometrical optics, ignoring the lens apertures 
for the moment.

Solution: Using the lens law twice in succession, the image will be at infinity.
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� � 

� � 

(b) If the object T1 is an on-axis point source, describe the Fraunhofer diffraction 
pattern of the field to the right of L2. 

Solution: In order to obtain the field at 2f to the right of L1, we can imagine that 
the system of lens L1 is illuminated by a point source at 2f to the left of lens L1, 
while the object (transparency) is the aperture of 2a (the diameter of lens L1) 
and the lens is infinitely large. 

From (5-57) in Goodman, the field at 2f to the right of L1 is � � ��� 
x� � 

U2(x) = F rect 
2a 

�� 
x u= 

2λf 

z1 2f 1 
= = 

z2(z1 − d) 2f(2f − 0) 2f 

So U2(x) ∝ sinc ax . The Fraunhofer diffraction of the field to the left of lens 
λf 

L2 is � � 
x�� 

F{u2(x)}|x�� = rect 
λf a 

We can imagine that we have a transparency with function of U2(x) at f to the 
left of lens L2 and use a plane wave to illuminate it. Then we find its Fraunhofer 
diffraction at f to the right of lens L2. What we get is a truncated plane wave 
with width of a. 

(c) How are your two previous answers consistent within the approximations of parax­
ial geometrical and wave optics? 
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Solution: From geometrical optics, we know that lens L1 defines the aperture of 
the system. We can get the width of the output plane wave easily from the plot 
above: 

f 
2a = a 

2f 
· 

(d) The point source object T1 is replaced by a clear aperture of full width	w and 
a second thin transparency T2 is placed between the two lenses, at distance f 
to the left of L2. The system is illuminated coherently with a monochromatic 
on-axis plane wave at wavelength λ. Write an expression for the field at distance 
2f to the right of L2 and interpret the expression that you found. 

Solution: First, without considering T1 and T2, we can find the Fourier plane 
(the image of the illumination source, which is a plane wave for this case) at 2f 
to the right of L2. Then the image of the aperture T1 through lens L1 is exactly 
at the same place as the transparency T2. The two objects can be combined by 
multiplying them together. Now we can predict that at distance 2f to the right 
of lens L2, we will see the Fourier transform of the product of T1 and T2. 

If we assumed T2 with the function of f(x), at the distance 2f to the right of L2, 
the field is � � � 

U(x�) = F {rect x
f(x)}�� 

w	
· 

u= x
� 

λf 
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x (x  x)2 x x2 

U(x�) = 
����

g(x) · exp 

�
1 

j
−· dx × exp −j · 1� λ 2f λ f 

    
x (x2 − x )2 

� � �
× exp j

λ 
· 1

2f 
  

x x2 

�
x (x3  x )2 

· dx1 · 2
f(x2) · exp 

 

�
dx2

 
x ( � − x )2 

�
j · −
λ f 

x× 

�
 3  exp 3

exp −j  j  dx3 ���� λ
·
f 

·
z

 

� �
λ
·
 

x
 x�2 
�  2xx1 +

�
 x2 x�2 x2  2 �� x x + x2

�= 2 1 
g(x)f(x

�
1

2)  
−· exp j 1

 

�
1 2

2f

−
 +


−
λ f 2f


 
�2 
�3 − 2x3x2 + x 2 x 2 �22 x�3 x� − 2x�x 2

+
 
 +
 3 + x3 dx dx dx dx���� f

−

 

��
1 2 3

f z
   

x (x + x2) 
= g(x)f(x2) exp 

�
−j x1 

�
×  

� λ f 
   
x  x
 

�
2 x2 2 2 2 

2 x 2x x x�  2x�x
 2 3  

−− 2 3 + x3 exp j + + + dx dx1 dx2 dx3 
λ 2f 2f f f z 

��

z1 1 
= 

z2(z1 − d) f 

We can also obtain the same result from cascade derivation. Let us call object 
T1 g(x), and transparency T2 f(x2). 
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���   
x x2 3x2 2x x x�2 

3 2  2x�x 2 

= g(x)f(x2)δ(x + 3 + x
x2) exp 

�
j 

�
+ 2 − + 

− 3 dx dx dx� λ  3� � � 2f 2f 2
f z 

   
x 2x2 

2 2x3x2 x�2  2x�x 2

��
3 +  

=  x
f(x2)g( x ) exp j  

−− 3
2  − + 

 

��
dx

 2 dx3 �� f f z
 � λ

    
x 2x2 x x�2 x x2 2x 2x� 

= f(x2)g(−x · 2

�
 

�
j · exp j 3  2 

2) exp j exp + x dx dx
λ f λ z 

� � �
− 3 2 3 � � � λ z z

 

�
f 

�
�    �  

��
x 2x2

2 x x 2 x x2 x� 2 

= f(x2)g(−x2) · exp j · exp j · exp −j z
λ

 � � �z λ 
·  · + dx

f z 2
λ  � � � f

 

� �
 

�
x 2 z x� 

� �
 x 2x2

= f(x g 2  exp j − x2
2) (−x )

f 2 2 exp
λ   

f 
−j · dx2 

λ 
· 

f 
   

x 2x x� 

�
= 
�

−x2) exp 

�
− 2

f(x2)g( j
λ 
· 

f 
·
�
 dx2 if z = 2f 

(e) Derive and approximately sketch, with as much quantitative detail as you can, 
the intensity observed at distance 2f to the right of L2 when T2 is an infinite 
sinusoidal amplitude grating of period Λ, such that Λ � a. 

Solution: The transparency can be expressed as: 

1 � �  x 
f(x) = 1 + cos 2π 

2 Λ 
  x 

��
The aperture is rect 

� �
, so: 

w 
  
x 


U(x�) = F 
�
f(x) · rect 

�
� � w 

�����
u= x

� 

 � λf� 
1 wx� 1 x� 1

��   
1 

� �
x� 1 

= sinc + sinc w − + sinc w + 
2 λf 4 λf Λ 4 λf Λ 

��
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9. An infinite periodic square-wave grating with transmittivity as shown in Figure 3A is 
placed at the input of the optical system of Figure 3B. Both lenses are positive, F/1, 
and have focal length f . The grating is illuminated with monochromatic, spatially 
coherent light of wavelength λ and intensity I0. The spatial period of the grating is 
X = 4λ. The element at the Fourier plane of the system is a nonlinear transparency 
with the intensity transmission function shown in Figure 3C, where the threshold and 
saturating intensities Ithr = Isat = 0.1I0. To calculate the response of this system 
analytically, we need to make the paraxial approximation; strictly speaking, that is 
questionable for F/1 optics, but we will follow it nevertheless. An additional necessary 
assumption is discussed in the first question below. 
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� � �� 

(a) To answer the second question, we need to neglect the Airy patterns forming at 
the Fourier plane and pretend they are uniform bright dots. Explain why this 
assumption is justified and what effects it might have. 

Solution: Nonlinearity will be significant only at the peaks of the Airy disks. 
The system has a low F/# (high NA), so the Airy disks are very tight and the 
assumption is justified. 

(b) Derive and plot the intensity distribution at the output plane using the above 
assumption. 

λ 1 
Solution: Diffraction angle θ = = 

X 4

a 1


System aperture = = (F/1) system admits orders 0, ±1, ±2 
f 2 

⇒ 

0th order intensity: (1
2 )

2I0 = 1
4 I0 ⇒ transparency transmits 0.1I0 � �2

1 sin(π 
2 ) ±1st order intensity: I0 = 0.101I0 ⇒ transparency transmits 0.1I0

2 
· π 

2 

2πx ±2nd order intensity: 0 ⇒ output I(x�) = 0.1I0 1 + 2 cos 
X 
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