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Learning Objectives: Solar Cell Characterization

1.

Describe basic classifications of solar cell characterization
methods.

Describe function and deliverables of PV characterization
techniques measuring J._losses.

Describe function and deliverables of PV characterization
techniques measuring FF and V__losses.
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Liebig’s Law of the Minimum

S. Glunz, Advances in
Optoelectronics 97370
(2007)

Image by S. W. Glunz. License: CC-BY. Source: "High-Efficiency Crystalline
Silicon Solar Cells.” Advances in OptoElectronics (2007).

Thotat = Mabsomption * Mhexcitation * Tlarif/diffusion < Theparation * Meollection
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Taxonomy of PV Device Characterization Techniques

1. By property tested: Electrical, structural, optical,
mechanical...

2. By device performance metric affected: Manufacturing
vield, reliability, efficiency (short-circuit current, open-
circuit voltage, fill factor)...

3. By location (throughput): In-line (high throughput) vs. off-
line (low throughput).
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Learning Objectives: Solar Cell Characterization

1.

Describe basic classifications of solar cell characterization
methods.

Describe function and deliverables of PV characterization
techniques measuring J_ losses.

Describe function and deliverables of PV characterization
techniques measuring FF and V__losses.
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Short Circuit Current

e Optical Reflection
e Spectral Response
* Minority Carrier Diffusion Length
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Optical Reflection

Spectrophotometer: Measures specular and diffuse reflectance, and transmission.

Please see the lecture 16 video to see a photo of a spectrophotometer.
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Increasing Absorption

Light trapping increases
the “optical thickness” "
of a material

— Physical thickness
can remain low

— Allows carriers to be
absorbed close to the
junction

Courtesy of Christiana Honsberg. Used with permission.
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Increasing Absorption

Effect of Textured Surfaces on Light SEM image of textured silicon
Absorption

Courtesy of Christiana Honsberg. Used with permission.

Q: What other mechanisms exist to trap light?
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Collection Probability

« A light generated minority carrier can readily recombine.

« If it the carrier reaches the edge of the depletion region, it is swept
across the junction and becomes a majority carrier. This process
Is collection of the light generated carriers.

 Once a carrier is collected, it is very unlikely to recombine.

p-type n-type
Incoming light o
o e ©
L+ 99 ht- generated hole
e} will eventually
O O recombine unless it moves
drift lo p-type material
n £ . : i
Electric field sweeps hole !ﬂlﬂle may diffuse to ]I_.II"I[‘IIII[}I‘I .
i | if generated close to the junction
across junction
o | o o © ©O

Courtesy of Christiana Honsberg. Used with permission.
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Collection Probability

- Collection probability is the probability that a light generated carrier will
reach the depletion region and be collected.

- Depends on where it is generated compared to junction and other
recombination mechanisms, and the diffusion length.

iy . .

Unity collection
probability for Rear surrace
carriers generated in
the pn junction

Solar cell with good
surface passiration

Solar cell with poor
surfac e pas sivation

Collection Probability

R

Solar cell with how Distance in the device
diffusion length

Front Surface

With high surfac e recombinat ion,
the collection probability at the
surface is low.

Courtesy of Christiana Honsberg. Used with permission.
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Collection Probability

n-type
falls approximately within a diffusion

p-type

Collection probability is low further than a diffusion length away
from junction

Courtesy of Christiana Honsberg. Used with permission.
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Collection Probability

J.. determined by generation rate and collection

probability w
J; = qIG(x}GP(x]dx
¥,

-
-

o =qT[jm{>~)Hae'ﬁf“*d>x]CP{x}dx
0

—
=

Collection probability
P

Ger)dmtinh
»

Collection
Probability
GCeneration

>
Distance in the device

Courtesy of Christiana Honsberg. Used with permission.
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Spectral Response
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Spectral Response

Areduction of the overall QE is

4 caused by reflection and a low
diffusion length.

?1 0 ’ Ideal quantum
[ efficiency
Q /
= The red response is »
w reduced due to rear No light is absorbed
£ surface passivation, below the band gap and
g reduced absorption at so the QE is zero at long
= long wave_lengths and ___ .\ wavelengths.
a low diffusion lengths.

>
— B _he Wavelength

Blue response is reduced due to front _E_g

f bination.
surface recombination from PVCDROM

Standards: IEC 60904-3 and 60904-8
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External vs. Internal Quantum Efficiency

IQE =

EQE

Electrons Out

(1-R)  (Photons In)- (1-R)

... where R = Reflectivity
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© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
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Spectrally-Resolved Laser Beam Induced Current (SR-LBIC)

4 or more lasers measure IQE(A).

Digital processing of data extracts
relevant device parameters.

Please see the lecture 16 video or the link below for a
visual of the instrument.

XY stage moves sample.

A 2D map of IQE obtained!

In advanced versions, all lasers fire
simultaneously (as they are pulsed at
different frequencies) into a fibre
optic cable. FFT of the current signal
decouples different wavelengths.

http://www.isfh.de/institut_solarforschung/media/sr _|bic _messplatz_1.jpg
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Graph and photo © source unknown. All rights reserved. This content is excluded from our

Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

See: P. A. Basore, IEEE Trans. Electron. Dev. 37, 337 (1990).
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Learning Objectives: Solar Cell Characterization

1.

Describe basic classifications of solar cell characterization
methods.

Describe function and deliverables of PV characterization
techniques measuring J._losses.

Describe function and deliverables of PV characterization
techniques measuring FF and V__ losses.
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V,. and Operating Conditions

IV Curve Measurements
Series Resistance

— Contact Resistance
— Sheet Resistance

Shunt Resistance
— Lock-in Thermography

Electroluminescence
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Refresher: Open Circuit Voltage

« |If collected light-generated carriers are not extracted from the
solar cell but instead remain, then a charge separation exists.

« The charge separation reduces the electric field in the depletion
region, reduces the barrier to diffusion current, and causes a
diffusion current to flow.

p-type n-type
| Incoming light o
© o 0 [
diffusion o ght- generated hole
! > ©o will eventually
O _ o recombine unless it moves
o drift lo p-type material
O« o j i
Flectric|figl $Wekps hole !"lﬂlE may diffuse tﬂ]UI‘I[‘trIDI‘I ,
: | if generated close to the junction
across junction
) , °o . o © ©

Courtesy of Christiana Honsberg. Used with permission.
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Two Diode Model

Equivalent Circuit Diagram of Solar Cell

A —L o

Rs = Rseries' FOI‘
good solar cell,
this must be

Joi Joz
' ' small.
Via By B> Re 1

Image by MIT OpenCourseWare.

qV+JR, qV+JR)) V+JR,
J:JL_JmeXPL —Jp, €Xp -
\ kT 2kT ) Ry
diffusion current recombination current
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IV Curve Measurements
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IV Curve Measurements

Several IV curves for real solar cells, illustrating a variety of IV responses!
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Physical Causes of Series Resistance

Series resistance
composed of emitter and
metal grid resistance
terms.

Want large cross section
area of grid and emitter to
reduce resistances.

Courtesy of Christiana Honsberg. Used with permission.
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Physical Causes of Shunt Resistance

Paths for electrons to flow from the emitter into the base. Can be caused by
physical defects (scratches), improper emitter formation, metallization over-
firing, or material defects (esp. those that traverse the space-charge region).

Courtesy of Trans Tech Publications and Otwin Breitenstein. Used with permission.
Potential barrier for electrons at a forward-biased n*p junction crossed by a charged extended defect.

O. Breitenstein et al., “EBIC investigation of a 3-Dimensional Network of Inversion Channels in Solar Cells on Silicon
Ribbons,” Solid State Phenomena 78-79, 29-38 (2001).
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Effect of R, and R,

High series resistance and low shunt resistance degrade primarily
FF, but in severe cases Voc and possibly Jsc.
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Lock-in Thermography

Lock-in Thermography Images Shunts

(e.g., Local Increases in
Dark Forward Current)

See the lecture 16 video for related visuals and explanation.
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Lock-in Thermography

lock-in calculation
and
controlling

S e TR — |
V.. measurement (optional)

Figure . Experimental set-up of the LimoLIT measurement assembly. The wafer with a pn junction or the solar cell can be
illuminated by a halogen lamp (constant-bias light). The modulated reference signal (pulsed light) is provided by an array of
LEDs. Different wavelengths can be used

© Wiley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

M. Kaes et al., Prog. Photovolt. 12, 355 (2004)
J. Isenberg and W. Warta, Prog. Photovolt. 12, 339 (2004)
O Breitenstein et al., Solar Energy Mater. Solar Cells 65, 55 (2001)

29
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Lock-in Thermography - Sensitivity

—f=135Hz

noise [effective value in mK]
e
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rattlesnake!

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Sensitivity is a function of integration time.

O Breitenstein et al., Solar Energy Mater. Solar Cells 65, 55 (2001)
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Lock-in Thermography — Dark vs. llluminated

Dark lluminated

om« NN | | | 0.25 mK

© Wiley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

M. Kaes et al., Prog. Photovolt. 12, 355 (2004)
O Breitenstein et al., Solar Energy Mater. Solar Cells 65, 55 (2001)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Fig. 6. Schematic 2-dimensional potential distribution on a positively charged surface (in front) crossing an
n*p-junction. E_: conduction band edge, E,: valence band edge, E,: surface potential barrier height. 34
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Lock-in Thermography — Imaging Losses
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Correlation between Thermography and LBIC
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Cheaper Methods of Shunt Detection:

Liquid Crystal Thermochromic Sheets

See: “Shunt imaging in solar cells using low cost commercial liquid crystal sheets” C. Ballif
et al., Proc. IEEE Photovoltaic Specialists Conference, 2002, pp. 446- 449.
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Electroluminescence
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Courtesy of ISFH. Used with permission.
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Evolution of IR Imaging Techniques
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© Martin Kasemann. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Kasemann, M., et al. “Progress in Silicon Solar Cell Characterization with Infrared
Imaging Methods.” Proceedings of the 23rd European Photovoltaic Solar Energy

Conference (2008): 965-973. 36 B isi (MIT) 2011
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Suns-Voc

*Measures V,__as a function of illumination
condition, with decaying flash lamp.

* Useful for decoupling series resistance
losses from other defects.

* Commercialized by Sinton Instruments.
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Figure 5. The same Suns-V, data as in Figure 3,

plotted as a photovoltaic IV curve and compared to the
IV curve taken on the finished cell.

© R. A. Sinton and A. Cuevas. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Sinton and Cuevas, Proc. 16t EU-PVSEC (Glasgow, UK, 2000).
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