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2.626/2.627: Fundamentals

Every photovoltaic device must obey:

Output Energy

Conversion Efficiency (77) = ——
nput Energy

For most solar cells, this breaks down into:
Inputs Outputs

Solar Spectrum Light Charge Charge
P Absorption Excitation Separation Collection

ntotal — nabsorption X nexcitation X ndﬁﬁ/diﬂhsion X nseparation X ncollection
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Liebig’s Law of the Minimum

S. Glunz, Advances in
Optoelectronics 97370
(2007)

Image by S. W. Glunz. License: CC-BY. Source: "High-Efficiency Crystalline Silicon Solar Cells." Advances in OptoElectronics (2007).

ntotal — 77absorption X nexcitation X ndﬁﬁ/diﬂilsion X nseparation X ncollection
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Rough Depiction of Interrelated Materials &
Device Effects
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Learning Objectives: Toward a 1D Device Model

1. Describe what minority carrier diffusion length is, and calculate its
impacton J, V.. Describe how minority carrier diffusion length is
affected by minority carrier lifetime and minority carrier mobility.

Describe how minority carrier diffusion length is measured.
Lifetime:

o Describe basic recombination mechanisms in semiconductor
materials.

o Calculate excess carrier concentration as a function of carrier
lifetime and generation rate. Compare to background (intrinsic +
dopant) carrier concentrations.

4. Mobility:

e  Describe common mobility-limiting mechanisms (dopants,
temperature, ionic semiconductors).
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Minority Carrier Diffusion Length

Definition: Minority carrier diffusion length is the average
distance a minority carrier moves before recombining.

Importance to a Solar Cell: Photoexcited carriers must be
able to move from their point of generation to where they can
be collected. Longer diffusion lengths generally result in
better performance.
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Minority Carrier Diffusion Length

Definition: The average distance a minority carrier moves before recombining.

Importance to a Solar Cell: Carriers must be able to move from their point of
generation to where they can be collected.

Cross section of solar cell made of high-quality material

Minority carrier diffusion length (L) is LARGE.
Solar cell current output (J. ) is large.

Most electrons diffuse through
the solar cell uninhibited,
contributing to high photon-to
electron (quantum) efficiencies.

y
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Minority Carrier Diffusion Length

Definition: The average distance a minority carrier moves before recombining.

Importance to a Solar Cell: Carriers must be able to move from their point of
generation to where they can be collected.

Cross section of solar cell made of defect-ridden material
Minority carrier diffusion length (L) is small.
Solar cell current output (J. ) is small.

Electrons generated closer to
the surface make it to the
contacts, but those in the bulk
are likely to “recombine” (lose
their energy, e.g., at bulk
| defects, and not contribute to
the solar cell output current).
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Mathematical Formalism

Recall that the current produced in an illumianted pn-junction
device, is limited by the minority carrier flux at the edge of the
space-charge region.

PC1D Simulation for 300um thick Si

Solar Cell
Joe ®qGL g
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Mathematical Formalism

Note that the voltage is also affected by L .

kBT J < From Eq. 4.4_5 in_ Green.
VO — In +1 V.. = open-circuit voltage
q J o J, = saturation current density
1 ) From Eq. 4.37 in Green.
QDI/Zi D = minority carrier diffusivity
JO N — N = majority carrier dopant concentration
n; = intrinsic carrier concentration
v

Vie o€ ln(L%liff)oc 21n(Ldiﬁ“)OC ln(Ldiﬁ“)
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Mathematical Formalism

Assuming a weak dependence of FF on L, we have the following

relationship:
nocd Vo, € Ly ]n(Ldiff)
Device Efficiency vs. Diffusion Length
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Bulk Minority Carrier Diffusion Length [L_diff]

12 Buonassisi (MIT) 2011



Mathematical Formalism

Assuming a weak dependence of FF on L, we have the following

relationship:
nocd Vo, € Ly ]n(Ldiff)
Device Efficiency vs. Diffusion Length
p- )
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Bulk Minority Carrier Diffusion Length [L_diff]
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Minority Carrier Diffusion Length

When your material has short minority carrier diffusion length
relative to absorber thickness, two engineering options:
Reduce absorber layer thickness (if light management permits) or
increase diffusion length.
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Learning Objectives: Toward a 1D Device Model

1. Describe what minority carrier diffusion length is, and calculate its
impact on J, V.. Describe how minority carrier diffusion length is
affected by minority carrier lifetime and minority carrier mobility.

Describe how minority carrier diffusion length is measured.

3. Lifetime:
o Describe basic recombination mechanisms in semiconductor
materials.

o Calculate excess carrier concentration as a function of carrier
lifetime and generation rate. Compare to background (intrinsic +
dopant) carrier concentrations.

4. Mobility:

e  Describe common mobility-limiting mechanisms (dopants,
temperature, ionic semiconductors).
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Collection Probability

- Collection probability is the probability that a light generated carrier will
reach the depletion region and be collected.

- Depends on where it is generated compared to junction and other
recombination mechanisms, and the diffusion length.

Collection Probability

Unity collection
probahility for
carriers generated in
the ph junction

Hear surmrace

Solar cell with good
surface passiration

Solar cell with poor
surfac e pas sivation

R

Front Surface

Solar cell with 10w pistance in the device
diffusion length

With high surface recombination,
the collection probability at the

surface is low.

Courtesy of Christiana Honsberg. Used with permission.
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Collection Probability

— n-type
R il
falls approximately within a diffusion _
— p-type

Collection probability is low further than a diffusion length away
from junction

Courtesy of Christiana Honsberg. Used with permission.
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Collection Probability

J.. determined by generation rate and collection

probability w
J; = qIG(x}GP(x]dx
¥,

-
-

—
o

Collection probability
P

Collection
Probability
Generation

>
Distance in the device

Courtesy of Christiana Honsberg. Used with permission.
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Spectral Response (Quantum Efficiency)

Areduction of the overall QE is

4 caused by reflection and a low
diffusion length.

?1 0 ; Ideal quantum
@ efficiency
=) /
= The red response is »
w reduced due to rear No light is absorbed
= surface passiuat!on, below the band gap and
g reduced absorption at so the QF is zero at long
= long wavelengths and ___ wavelengths.
C='$ low diffusion lengths.

>
— . _he Wavelength

Blue response is reduced due to front _E_g
surface recombination.

Courtesy of PVCDROM. Used with permission.

Standards: IEC 60904-3 and 60904-8
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Minority Carrier Diffusion Length
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Graph and photo © source unknown. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

See: P. A. Basore, IEEE Trans. Electron. Dev. 37, 337 (1990).
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What Limits Diffusion Length?



What Limits the Minority Carrier Diffusion Length?

Quick answer: Recombination-active defects, intrinsic mobility
limitations, or absence of percolation pathways.

Thin films: Effect of bulk defects (GBs) on n. Nanostructured: Effect of morphology on n.

Please see lecture video for visuals.

R.B. Bergmann, Appl. Phys. A 69, 187 (1999) F. Yang et al., ACS Nano 2, 1022 (2008)
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Mathematical Formalism

Diffusion length is governed by “lifetime” and “mobility”

Tuik = PUIK lifetime

— L 4 = bulk diffusion length
Ldiff o \/D Tbulk Dzdiffusivity

kg = Boltzmann coefficient
T = temperature

q = charge

U = mobility

A kBT For carriers in an electric field
=— U
q

Definition of “bulk lifetime”: The average time an excited carrier exists before recombining. (l.e.,
temporal analogy to diffusion length.)
Units = time.
Tuk Of MS to ms is typical for indirect bandgap semiconductors, while 1, of ns to us is typical
of direct bandgap semiconductors.
Definition of “mobility”: How easily a carrier moves under an applied field.(i.e., ratio of drift velocity
to the electric field magnitude.)
Expressed in units of cm2/(V*s).
Mobilities of 10-100’s cm?/Vs typical for most crystalline semiconductors. Can be orders of

magnitude lower for organic, amorphous, and ionic materials.
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Mathematical Formalism

Diffusion length is governed by “lifetime” and “mobility”

— L 4 = bulk diffusion length
Ldiff T \/D TbulkJ Dd= difftjjsivi’:yu |

\ T = bulk lifetime

A kBT | Carrier Lifetime ers jn an electric field

ng —woonZzmMann coefficient
T = temperature

a = charge
= mobility
Carrier Mobility
Definition of “bulk lifetime”: The average time ists before recombining. (l.e.,
temporal analogy to diffusion length.)
Units = time.

Tuk Of MS to ms is typical for indirect bandgap semiconductors, while 1, of ns to us is typical
of direct bandgap semiconductors.
Definition of “mobility”: How easily a carrier moves under an applied field.(i.e., ratio of drift velocity
to the electric field magnitude.)
Expressed in units of cm?/(V*s).
Mobilities of 10-100’s cm?/Vs typical for most crystalline semiconductors. Can be orders of

magnitude lower for organic, amorphous, and ionic materials.
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Learning Objectives: Toward a 1D Device Model

1. Describe what minority carrier diffusion length is, and calculate its
impact on J, V.. Describe how minority carrier diffusion length is
affected by minority carrier lifetime and minority carrier mobility.

2. Describe how minority carrier diffusion length is measured.
Lifetime:

o Describe basic recombination mechanisms in semiconductor
materials.

e  Calculate excess carrier concentration as a function of carrier
lifetime and generation rate. Compare to background (intrinsic +
dopant) carrier concentrations.

4. Mobility:

e  Describe common mobility-limiting mechanisms (dopants,
temperature, ionic semiconductors).
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Excess Electron Carrier Concentration

Generally equal to
doping concentration

n=n,+An

Excess Electron Carrier Generation rate \

Density L carriers J Excited Carrier
3 Lifetime
L carriers J Ciy e B
cm’ [sec]
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Minority, Majority Carriers in Silicon Under AM1.5G

A =Gr=10"em™

AM1.5G ~ 1016

)

Excited Carrier
Lifetime

~10us

An=Ap=10"cm™
n.=10"cm™
An=Ap >n,

if :
N, =10"cm™
then :

2

Ap >> p, = Ni =10*cm™

D

N, >>An
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Carrier Lifetime and Recombination

Bulk Minority Carrier Lifetime:

An = Excess minority
T =—— carrier concentration
R R = Recombination rate

First approximation of minority carrier lifetime,
for low injection (e.g., illumination) conditions.

More Detailed Calculation:
1 1

Thulk e Trad
@)

p-type silicon
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Carrier Lifetime and Recombination

A Bulk Minority Carrier Lifetime:
Mo
L vV Q A7 An=Excess minority
T=—— carrier concentration
R R = Recombination rate

First approximation of minority carrier lifetime,
for low injection (e.g., illumination) conditions.

More Detailed Calculation:

1 1 1
N +

Tbulk z-I‘ad z:Augelr

N

T =
Auger 2
CN>

p-type silicon
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Carrier Lifetime and Recombination

A Bulk Minority Carrier Lifetime:
Mo
L vV Q A7 An=Excess minority
T=—— carrier concentration
R R = Recombination rate

First approximation of minority carrier lifetime,
for low injection (e.g., illumination) conditions.

More Detailed Calculation:

1 1 1 1
— = + +

Tbulk z-I‘ad z-Augelr ?SRH
O

p-type silicon
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Radiative Recombination
R=G= Bnp = Bn 12 ﬁ Under equilibrium

dark conditions

R = B(np n ) Net Recombination
non- eqwllbrlum

equ1l/br/um

n=n,+An

p=p,+Ap

1

T 0= 3 (NA N An) % n-type ( where n,=N)
B 1

Crvd = B(ND n Ap) % p-type ( where p,=N,)
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Radiative Recombination

1

_———h T = (2 X10_15X1016)=100ms

B n

Radiative recombination is very slow in silicon, and is
rarely the limiting lifetime in silicon-based solar cells.
However, radiative recombination is often the lifetime-
limiting recombination pathway for high-quality “thin-
film” materials, including GaAs.
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Defects and Carrier Recombination: t¢;,

Defects can form in semiconductors. Defects can introduce midgap stages.
Defect formation energy (AE,) determines Midgap states are characterized by their

equilibrium concentration at a given energy level(s) (Ep) and capture cross

temperqture. sections for electrons and holes (o, o)

i £

& . .
w Calculated midgap states for Fe complexes in Si
S c | I | |
2 1.0 | ! : :
© : : : :
? 0.75- : : - |
_.CI_'J : : E2 22 : :
£ : : : :
0.50 - : : ! :
0.25 - E s E E S E
E ) I 1 1 ‘ 1 1 I 1 1 1 1 I I

Fe, {FeV} {FeV} {Fel} {FeC} Fe  {VFeV} {FeO} {FeB} {FeB}

Substitutional Iron (Fe,)

S.K. Estreicher et al., Phys. Rev. B 77, 125214 (2008).

© APS. All rights reserved. This content is excluded from our Creative o
Commons license. For more information, see http://ocw.mit.edu/fairuse. Buonassisi (MIT) 2011
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Defects and Carrier Recombination: t¢;,

Trap State
(introduced by
defect)
- rno(no + p, + An)+ Tpo(po +n, + An)
SRH ~—
n,+p,+An
ET _Ec
n=N,=e “
E E,-E;
. . kT
ET pl - Nv =€
1
E TpO e
Nvthc)'p
| - [l c
2 7 2 2 1
% i % £ Tho =
o = o - Nvtho-n
o P 9 O .
© = N = trap density

o = capture cross-
section
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Defects and Carrier Recombination: t¢;,

Trap State

(introduced by
defect)

J ety

e captur
e emissio

h* captur
h* emission

35

With deep traps (i.e. mid-gap)
and low-injection conditions:

1
T =T =
SRH, n—type p0
NvthO'p
1
T =7 =
SRH, p—type n0
Nv, o,

Deep traps and high-injection
conditions:

Torrr = Tuo T 700

Buonassisi (MIT) 2011



Localized Defects Create Efficient Recombination

Pathway

Direct Bandgap
Semiconductor

Indirect Bandgap
Semiconductor

E

\/

‘ AAAAA hVZEg
Recombination efficient

E
(no phonon required) r

T~ nstops
/\ k

(a) Direct

E

RS Recombination inefficient
(phonon required)

SINT T

(b) Indirect

Image by MIT OpenCourseWare.
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Localized Defects Create Efficient Recombination

Pathway

Direct Bandgap
Semiconductor

Indirect Bandgap
Semiconductor

E

\/

NANANAAA hV:Eg
Recombination efficient lg
(no phonon required) J

E

— Efficient recombination

T~ nstopus
/\ k

(a) Direct

v via defect level!l

k T < us with high
defect concentrations

(b) Indirect

Image by MIT OpenCourseWare.

37 Buonassisi (MIT) 2011



Defects Impact Minority Carrier Lifetime

Minority carrier lifetime ()

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Impurity Point Defects (c-Si)

10° F g
'l‘ = Lifetime requirement
» for high-1)
i " 5 " * Cu
n T .
10" F "\ X e |
.‘I = N1 {\1-(,)]1 quench)
10° | "h . * 8
3 ;r : ‘.“ :
.'n K " e
-1 A L B
10" ¢ N C: IR
€
i LY
10" AT BCECERTTT MRt | -:numl :.unul‘luumi ;uuml o u ol :-uu
10° 10” 10" 10” 10" 10" 10" 10" 107 10"

Bulk metal concentration (cm's)

Minority carrier lifetime (us)

10° £
E To: 1000 ps Lifetime requirement
f for high-
162 Jorhighm
E To: 100 s
10' ,
F To: 10 us
10° £
E To: 1 s T e
10" F to: minority carrier lifetime
- 1n dislocation-free silicon
l()-z - L nu.ln.l4 i |||||u|( 1 |||nn|6 L ||||||||- 1a
100 10 100 10 10 10

Dislocations (c-Si)

Dislocation density (cm'z)

© American Institute of Physics. All rights reserved. This content
is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/fairuse.

A.A. Istratov, Materials Science & Engineering B, 134, 282 (2006)
C. Donolato, Journal of Applied Physics 84, 2656 (1998)
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Effect of Defects on Minority Carrier T, L i

The distribution of defects matters as much as their total concentration!

Quench only
ench and reanneal
§
Siow cool
g
-
/
0 10 20 30 40 50 60
Diffusion length (um)

2,500
2000
< 1,500 1
§|.ono 5(‘)
o !
50 25
0 75 50 0.0

25 o
(m)

Figure 3 Effect of the distribution of metal defects on material performance. Material performance (minority-carrier diffusion length histograms, left) in three differently
cooled samples (quench, guench and re-anneal, slow cool) is compared with size and spatial distributions of metal defects (high-resolution p-XRF maps (right), XRF copper
counts per second plotted against x and y coordinates in um). The material with microdefects in lower spatial densities clearly outperforms materials with smaller
nanodefects in higher spatial densities, despite the fact that all materials contain the same total amount of metals.

Reprinted by permission from Macmillan Publishers Ltd: Nature Materials.

Source: Buonassisi, T., et al. "Engineering Metal-Impurity Nanodefects for Low-

Cost Solar Cells." Nature Materials 4, no. 9 (2005): 676-9. © 2005.

T. Buonassisi et al., Nature Mater. 4, 676 (2005)
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Surfaces Introduce Many Mid-Gap States

Surface

1l
.

S
© ©

|
e-8-s-¢
CDCDIOC)
)
‘

3
_G_
&
&

http://pvcdrom.pveducation.org/ CHARACT/surface.htm

mid-gap surface states
provide additional
pathway for
recombination.

They are often formed

by dangling bonds on
the surface.

Sample
thickness

w1 W

Surface
recombination Carrier
velocity diffusivity
40

Ref: Horanyi et al.,
Appl. Surf. Sci. 63,
306 (1993)
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Proper Passivation Reduces Surface Recombination

€=-€-0-6€

ﬁ>‘>‘>‘>

ﬂ>‘>‘>‘>

—e-e-e-0e
g

Surface

Proper surface passivation ties up
dangling bonds, reduces density of trap
states.

“Perfect” passivation yields:

S —0, Tyurp —>P

Practically, S approaching 1 cm/s have
been achieved on silicon.
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Measuring Surface Recombination Velocity

1. Measure lifetime of samples of varying thickness, but with same bulk and
surface properties. (The lifetime will be affected by both bulk and surface
conditions, thus measurement will reveal an “effective” lifetime, or 7 .)

11 1
—=—4

T Tpue 7T

2. Any variation in lifetime should be due to a changing z ., per below:

Sample
thickness
2
w 1 (W

T ~ <+ Ref: Horanyi et al.,
surf 2 S D T Appl. Surf. Sci. 63,
306 (1993)

Y
Surface

recombination

surf

Ioct Carrier
Keloaty diffusivity

3. With >2 lifetime measurements (sample thicknesses), can solve for !
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Auger Recombination, T, .,

®

2 2
Rn—lype ~ pn Rp—type ~ np
1 1

Z-n—lype ~ Cn2 Tp—type ~ CpZ

*Above equations true at sufficiently high doping
densities (210'8cm-3 in silicon) 4 Buonassisi (MIT) 2011



Auger Recombination in n-type silicon

© AIP. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

J. Dziewior, W. Shmid, Appl. Phys. Lett., 31, p346 (1977)
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Auger Recombination in n-type silicon
10°

I_|.|T||_l_||_l'l111'| URRLLL BRI R R L R

B e,

T

R - = e g

Lifetime (pus)

p-type Si
N,=1x10"cm™
AT WY AT WA AT T e
10" 0" 40" 1™ 40" 10" 10 1Y 1
Excess camier densityAn {cm's}

Courtesy of Daniel Macdonald. Used with permission.

1 1 1 1
— = + +

z-bulk z-b and z-Au ger TSRH

Daniel MacDonald thesis “Recombination and Trapping in Multicrystalline Silicon Solar Cells,” The Australian

National University (May 2011) 45 Buonassisi (MIT) 2011



Measuring Minority Carrier Lifetime

Recall that

1 1 1 1
——=— + +

Toutk  %rad Tauger CsrRH

If defect-mitigated recombination is dominant, band-to-band radiative
recombination will be suppressed: | |

z-rad z-SRH
or

Toqg << Tgpy

In fact, band-to-band (radiative recombination) and defect-mitigated
(non-radiative recombination) are inversely proportional.

By imaging the band-to-band (radiative) recombination using a very
sensitive CCD camera, we are able to quantitatively extract the minority
carrier lifetime. " Buonassisi (MIT) 2011



Photoluminescence Imaging (PLI)

Experimental Setup Measurement of Wafer

=l

CCD Camera

) .

S10BIUOD *P YHM YINyD

Image by MIT OpenCourseWare. 0

10 20 30 40 S0 60 70 80

FIG. 1. (Color online) Lifetime distribution within an 8.5 X 8.5 cm® area of
a 302 pm thick, 1.2 {) cm, me-Si, p-type wafer obtained from a PL image
measured with a data acquisition time of 1.5 s and with a spatial resolution
of 130 zm.

© AIP. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

M. Kasemann et al., Proc. IEEE PVSC, San Diego,
CA (2008). T. Trupke et al., Appl. Phys. Lett. 89, 044107 (2006).
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Temperature Changes o,
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© Springer-Verlag. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

S. Rein, Lifetime spectroscopy. Springer-Verlag (Berlin, 2005). p. 430

48
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Trapped carriers are more
likely to be (re-)emitted at
higher thermal energies
(k, T). At lower T, trapped
carriers reside in traps
longer, facilitating
recombination.
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Learning Objectives: Toward a 1D Device Model

1. Describe what minority carrier diffusion length is, and calculate its
impact on J, V.. Describe how minority carrier diffusion length is
affected by minority carrier lifetime and minority carrier mobility.

Describe how minority carrier diffusion length is measured.
Lifetime:

o Describe basic recombination mechanisms in semiconductor
materials.

o Calculate excess carrier concentration as a function of carrier
lifetime and generation rate. Compare to background (intrinsic +
dopant) carrier concentrations.

4. Mobility:

e  Describe common mobility-limiting mechanisms (dopants,
temperature, ionic semiconductors).

49 Buonassisi (MIT) 2011



Effect of Reduced Mobility on Solar Cell Performance

Low carrier mobility can reduce
device efficiency by several tens
of percent relative (as big of an

impact as lifetime!) E
-
e
o
Lyil=+D 2 15} |
diff bulk L : ]
l 10— /4 =001
I_E 08 10 12 14
- u Band Gap Energy E_[eV]

q

© American Physical Society. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

J. Mattheis et al., Phys. Rev. B. 77, 085203 (2008)
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What Limits Mobility?

1. Defect Scattering

2. Trapping at stretched bonds

3. Incomplete percolation pathways

4. Phonon Scattering
Example of carrier trapping Example of complex percolation pathway
L. Wagner et al., PRL 101, 265501 (2008) F. Yang et al., ACS Nano 2, 1022 (2008)

Diagrams removed due to copyright restrictions.
See lecture video.
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Mobility and Carrier Concentration in Semiconductor

Increased concentration of ionized dopant atoms increases
conductivity, but can reduce carrier mobility (due to
scattering).

1]

Hole Mobility g lem®/V-s)

Il

101
—50 b

Temperature |~ Cl
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Percolation Pathways

Both y and t play a role in determining L, and hence efficiency, for various
device architectures.

Table removed due to copyright restrictions.
See lecture video.

F. Yang et al., ACS Nano 2, 1022 (2008)
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Simple Example

1. Well-behaved inorganic semiconductor (no effect of
trapping at stretched bonds and incomplete percolation
pathways).

2. Defect scattering dominant = ionized dopants inside
sample scatter carriers.
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Demo: Conductivity of Heated Intrinsic and Doped
Silicon




Demo Explained

1
n=n,+An~=Ny+An O=—=qun
P

For intrinsic Si, An >> N,

For highly doped Si, An << Nj,. Conductivity is the product of y and n.
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