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1. Describe the difference between “Energy Conversion Efficiency” and 
“Quantum Efficiency.” 

2. Describe common factors that cause solar cell IV curves to deviate 
from an ideal diode model: shunt & series resistance, recombination 
currents, and current crowding. 

3. Calculate series resistance for a solar cell. 

4. Calculate the Fermi Energy of a solar cell as a function of dopant 
concentration, illumination condition, and temperature. 

5. Calculate carrier generation as a function of depth in a solar cell. 

6. Calculate how material quality (minority carrier diffusion length) 
affects QE and solar cell performance. 

7. Create a 1D model for solar cell performance based on diffusion 
length, optical absorption coefficient, surface reflectivity, and series & 
shunt resistances. 

Learning Objectives: Toward a 1D Device Model 
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Key Concept: 

 
“Energy conversion efficiency” is not the same thing as 
“quantum efficiency”. 
 

“Quantum efficiency (QE)” is defined as the number of electrons 
out per incident photon. Note that QE is simply a census: it 
does not take into consideration the energy of the electron or 
photon. 
 
QE is generally reported as a function of wavelength. QE is a 
useful troubleshooting tool to identify why a device is 
underperforming. 
 
QE values can be quite high (between 60 and 99% for certain 
wavelengths), and thus can be used by devious individuals to 
misrepresent the conversion efficiency of their solar cell device. 
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A Note about “Efficiency” 

Technical Terms: 
- Solar Conversion Efficiency 
- External Quantum Efficiency 
- Internal Quantum Efficiency 

What does this 
really mean? 
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Solar Conversion Efficiency: Defined in Previous Slides 

   
Power Out

Power In
   

Imp  Vmp


   

FF Isc Voc



Typical values are 12–20% for established technologies, <10% for most emerging 
technologies. 

 
andF: Vary with illumination intensity (e.g., 1 Sun) 
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External Quantum Efficiency 

Typical peak values are 60–90%, depending on reflectivity, for moderate-efficiency 
devices. 

 
EQE highly wavelength- and illumination-dependent! 

EQE   Electrons Out
Photons In
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from PVCDROM 

External Quantum Efficiency 

Here’s an example of a QE spectrum for a solar cell. Note the near-unity (i.e., 100%) 
QE in the visible wavelengths. 
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Courtesy of PVCDROM. Used with permission.
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Internal Quantum Efficiency 

Typical peak values between 80–98% for moderate-efficiency devices. 
 

IQE highly wavelength- and illumination-dependent! 

IQE =  
EQE

1R 
 =

Electrons Out

Photons In  1R 
… where R = Reflectivity 
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Reflectivity and IQE 
(measured with different bias illumination) 

Internal Quantum Efficiency 

Examples of illumination-dependent IQE measurements for a defect-rich 
multicrystalline silicon solar cell. Minority carrier trapping results in low IQE with 

low bias illumination. 
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Approach “efficiency” with a grain of salt: 

When an efficiency is quoted, think about: 
- What “efficiency” is being measured? 
- What is the nature of the light being used? 

- What spectrometer to simulate solar spectrum? 
- If monochromatic, what wavelength? 
- What intensity (photon flux)? 
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An example of honest efficiency 
reporting 

Please see the abstract from Huynh, W., J. Dittmer et al. “Hybrid Nanorod-
Polymer Solar Cells.” Science 295, no. 5564 (2002): 2425-7.
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1. Describe the difference between “Energy Conversion Efficiency” and 
“Quantum Efficiency.” 

2. Describe common factors that cause solar cell IV curves to deviate 
from an ideal diode model: shunt & series resistance, recombination 
currents, and current crowding. 

3. Calculate series resistance for a solar cell. 

4. Calculate the Fermi Energy of a solar cell as a function of dopant 
concentration, illumination condition, and temperature. 

5. Calculate carrier generation as a function of depth in a solar cell. 

6. Calculate how material quality (minority carrier diffusion length) 
affects QE and solar cell performance. 

7. Create a 1D model for solar cell performance based on diffusion 
length, optical absorption coefficient, surface reflectivity, and series & 
shunt resistances. 

Learning Objectives: Toward a 1D Device Model 
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Equivalent Circuit: Simple Case 

Vja V 

Rs 
J0 
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Equivalent Circuit: Simple Case 
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Key Concepts: 

 
The ideal diode equation can be enhanced in two key ways: 
 
1) We can add the effects of parallel resistance and series resistance. 
 
2) Advanced Concept: Instead of one saturation current Io, there are usually two 
saturation currents contributing to most solar cell devices: (a) one resulting from 
carrier recombination in the space-charge region (dominant at lower forward bias 
voltages) and (b) one resulting from carrier recombination in the bulk (dominant at 
higher forward bias voltages). The “two-diode model” takes both saturation currents 
into account. 
 
 
Further Reading: 

 
Green, Chapter 5 
 
PVCDROM, Chapter 4: Solar Cell 
Operationhttp://www.pveducation.org/pvcdrom/solar-cell-operation/solar-cell-structure 
 
K. McIntosh: “Lumps, Humps and Bumps: Three Detrimental Effects in the Current-Voltage 
Curve of Silicon Solar Cells,” Ph.D. Thesis, UNSW, Sydney, 2001 

J  J01exp
q V  JRs 

n1kT





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 J02 exp

q V  JRs 
n2kT
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




V  JRs
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#9 
#14 
#100 
FZ, e.s.r. 85-101/sq. 

#14 
#100 
#124 
FZ, e.s.r. 79-87/sq. 

IV Curve Measurements 

Several IV curves for real solar cells, illustrating a variety of IV responses! 
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Fill Factor 
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Why Fill Factor (FF) Matters: 

This is a sample IV curve for a high-efficiency solar cell: High FF. 

Courtesy of PVCDROM. Used with permission.
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Why Fill Factor (FF) Matters: 
This is a sample IV curve for a low-efficiency solar cell (same Isc and Voc, 

but lower FF). 
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Courtesy of PVCDROM. Used with permission.

http://www.pveducation.org/pvcdrom
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Effect of Low Shunt Resistance (Rsh) 

Source: http://www.pveducation.org/pvcdrom/solar-cell-operation/shunt-resistance 
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Courtesy of PVCDROM. Used with permission.21
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Physical Causes of Shunt Resistance (Rsh) 

Paths for electrons to flow from the emitter into the base. Can be 
caused by physical defects (scratches), improper emitter formation, 
metallization over-firing, or material defects (esp. those that traverse 
the space-charge region). 

For more information: See publications by Dr. Otwin Breitenstein (Max-Planck Institute in Halle, 
Germany) on use of lock-in thermography for shunt detection and classification in solar cells. 

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
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Effect of High Series Resistance (Rs) 

Source: http://www.pveducation.org/pvcdrom/solar-cell-operation/series-resistance 
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23 Courtesy of PVCDROM. Used with permission.
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1. Describe the difference between “Energy Conversion Efficiency” and 
“Quantum Efficiency.” 

2. Describe common factors that cause solar cell IV curves to deviate 
from an ideal diode model: shunt & series resistance, recombination 
currents, and current crowding. 

3. Calculate series resistance for a solar cell. 

4. Calculate the Fermi Energy of a solar cell as a function of dopant 
concentration, illumination condition, and temperature. 

5. Calculate carrier generation as a function of depth in a solar cell. 

6. Calculate how material quality (minority carrier diffusion length) 
affects QE and solar cell performance. 

7. Create a 1D model for solar cell performance based on diffusion 
length, optical absorption coefficient, surface reflectivity, and series & 
shunt resistances. 

Learning Objectives: Toward a 1D Device Model 
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Components of Series Resistance 

Back Contact 

Base (bulk) 

Emitter (front surface) 

Front Contact Grid 

Bulk Current 

Lateral Current Front Contact Grid 
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Components of Series Resistance 

Back Contact 

Base (bulk) 

Emitter (front surface) 

Front Contact Grid 

Bulk Current 

Lateral Current Front Contact Grid 

Bulk Resistance 

Emitter Sheet 
Resistance 

Contact 
Resistance 

Line Losses 
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Components of Rs: 
Bulk Resistance 

 
(i.e., How to choose absorber thickness) 
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Components of Series Resistance 

Back Contact 

Base (bulk) 

Emitter (front surface) 

Front Contact Grid 

Bulk Current 

Lateral Current Front Contact Grid 

Bulk Resistance 

Emitter Sheet 
Resistance 

Contact 
Resistance 

Line Losses 
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Rb  
l

A

 
1

qn
Resistivity: 

Base Resistance: 
l = length of conductive path 
A = Area of current flow 
 = base resistivity 

q = charge 
n = carrier density 
 = carrier mobility 

NB: Beware of non-linearities! (e.g., dependence of µ on n). 

Bulk (Base) Resistance 
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Components of Rs: 
Emitter Sheet Resistance 

 
(i.e., How to design front contact metallization) 
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Components of Series Resistance 

Back Contact 

Base (bulk) 

Emitter (front surface) 

Front Contact Grid 

Bulk Current 

Lateral Current Front Contact Grid 

Bulk Resistance 

Emitter Sheet 
Resistance 

Contact 
Resistance 

Line Losses 
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Emitter Sheet Resistance 



 
1

q  N

 = resistivity 
µ = carrier mobility 
N = Carrier concentration (dopant concentration) 

Bulk Resistivity is defined according to the following expression: 

For a thin layer, a “sheet resistance” can be described: 

x = layer thickness 



s 
1

q e (x) ND (x)dx
0

t





s 
1

q  N t

For uniform layers, 
a simplification: 

Units of : Ω-cm 

Units of s: Ω , or Ω/☐ 
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Sheet Resistance Losses 
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The total power loss is thus: 
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Sheet Resistance Losses 
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2
At the maximum power point, the generated power in the emitter ROI is: 

Hence, the fractional power loss at the maximum power point (MPP) is: 



p 
Ploss

Pmpp


sS

2Jmp

12Vmp
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Sheet Resistance Losses 

C
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bird’s eye 
view of solar 
cell device 

dy 

b 

S/2 

Consider a solar cell with s = 40 Ω/☐, Jmp = 30 mA/cm2, and Vmp = 450 mV. 
If we want less than a 4% power loss (i.e., p < 0.04) through the emitter, then 



S 
12pVmp

sJmp

 4 mm
Agrees with finger 

spacing in commercial 
solar cells! 
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Components of Rs: 
Contact Resistance 
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Components of Series Resistance 

Back Contact 

Base (bulk) 

Emitter (front surface) 
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Bulk Current 

Lateral Current Front Contact Grid 

Bulk Resistance 

Emitter Sheet 
Resistance 

Contact 
Resistance 

Line Losses 

37



Buonassisi (MIT) 2011 

 Textbox rechts (Bild links) 
nicht verschieben 

 Frutiger 55 Roman 18 pt 

Method to Measure Contact Resistance (TLM Method) 

Figures courtesy of Stefan Kontermann 

Rc = contact resistance 

Sequential measurements of resistance between reference finger and measured finger. 

Courtesy of Stefan Kontermann. Used with permission.
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Components of Rs: 
Line Losses 
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Components of Series Resistance 

Back Contact 

Base (bulk) 

Emitter (front surface) 
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Line Losses 

Rb  
l

A
Line Resistance: 

l = length of conductive path 
A = Area of current flow 
 = metal resistivity 
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Resistivities of Common Materials 
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1. Describe the difference between “Energy Conversion Efficiency” and 
“Quantum Efficiency.” 

2. Describe common factors that cause solar cell IV curves to deviate 
from an ideal diode model: shunt & series resistance, recombination 
currents, and current crowding. 

3. Calculate series resistance for a solar cell. 

4. Calculate the Fermi Energy of a solar cell as a function of dopant 
concentration, illumination condition, and temperature. 

5. Calculate carrier generation as a function of depth in a solar cell. 

6. Calculate how material quality (minority carrier diffusion length) 
affects QE and solar cell performance. 

7. Create a 1D model for solar cell performance based on diffusion 
length, optical absorption coefficient, surface reflectivity, and series & 
shunt resistances. 

Learning Objectives: Toward a 1D Device Model 
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Question: When I illuminate my 
device, do I perturb the band 

structure or Fermi energy? 
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Calculate Fermi Energy (function of 
dopant + illumination + 

temperature) 
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Conductivity 

Band Diagram (E vs. x) 
Density of States 

En
er

gy
 

Density of States 

http://pvcdrom.pveducation.org/
Courtesy Christiana Honsberg and Stuart Bowden. Used with permission.
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Conductivity: Dependence on Temperature 

Band Diagram (E vs. x) Density of States 

En
er

gy
 

Density of States 

Covalently-
bonded 

electrons 

At absolute zero, no conductivity (perfect insulator). 

46 Courtesy Christiana Honsberg and Stuart Bowden. Used with permission.
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Conductivity: Dependence on Temperature 

Band Diagram (E vs. x) Density of States 

En
er

gy
 

Density of States 

At T > 0 K, some carriers are thermally excited across the bandgap. 

47
Courtesy Christiana Honsberg and Stuart Bowden. Used with permission.
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Conductivity: Dependence on Temperature 

Band Diagram (E vs. x) Density of States 

En
er

gy
 

Density of States 

At T > 0 K, some carriers are thermally excited across the bandgap. 

Covalently-
bonded 

electrons 

Thermally 
excited 

electrons 

48
Courtesy Christiana Honsberg and Stuart Bowden. Used with permission.
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Conductivity: Dependence on Temperature 

Band Diagram (E vs. x) Density of States 

En
er

gy
 

Density of States 

At T > 0 K, some carriers are thermally excited across the bandgap. 

Covalently-
bonded 

electrons 

“Intrinsic” 
Carriers 

49
Courtesy Christiana Honsberg and Stuart Bowden. Used with permission.
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Temperature Dependence of Intrinsic Carrier Concentration 



N  No exp EA /kbT 

Arrhenius Equation, 
generic form: © source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.

50
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Temperature Dependence of Intrinsic Carrier Concentration 



N  No exp EA /kbT 

Arrhenius Equation, 
generic form: 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.51

http://ocw.mit.edu/fairuse


Buonassisi (MIT) 2011 

Density of States 

En
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gy
 

Probability of Occupancy 

At absolute zero, no conductivity (perfect insulator). 

Conduction Band 

Valence Band 

T = 0 

Probability 
Distribution 

Function 

Conductivity: Dependence on Temperature 

En
er

gy
 

Density of States 52
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En
er

gy
 

Probability of Occupancy 

Probability 
Distribution 

Function 

T > 0 

At a finite temperature, finite conductivity (current can flow). 

Conductivity: Dependence on Temperature 

Density of States 

En
er

gy
 

Density of States 

Conduction Band 

Valence Band 

x 

Occupied 
Density of States 

En
er

gy
 

Density of States 

Conduction Band 

Valence Band 

= 

53



Buonassisi (MIT) 2011 

Occupied Density of States 

En
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Probability 
Distribution 

Function 

T > 0 

Conduction Band 

Valence Band 

At a finite temperature, finite conductivity (current can flow). 

Conductivity: Dependence on Temperature 

Fermi-Dirac 
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To reduce noise in a Si CCD camera, should 
you increase or decrease temperature? 
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Buonassisi (MIT) 2011 
http://www.answers.com/topic/semiconductor

Lower Temperature = Lower Intrinsic Carrier Concentration 

CCD inside a LN dewar 

http://msowww.anu.edu.au/observing/detectors/wfi.php
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Public domain image (Source: Wikimedia Commons).

Courtesy of The Australian National University. Used with permission.

http://www.answers.com/topic/semiconductor
http://msowww.anu.edu.au/observing/detectors/wfi.php
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Question: Transistors made from which 
semiconductor material experience greater 

electronic noise at room temperature: 
Germanium or Silicon? 
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T > 0 

At a finite temperature, finite conductivity (current can flow). 

Intrinsic Conductivity: Dependence on Bandgap 

Silicon Bandgap ~ 1.12 eV 
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T > 0 
Germanium Bandgap ~ 0.67eV 

At a finite temperature, finite conductivity (current can flow). 

Intrinsic Conductivity: Dependence on Bandgap 
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Intrinsic Conductivity: Dependence on Bandgap 

Please see table at https://web.archive.org/web/20130818190346/
http://www.siliconfareast.com/sigegaas.htm
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