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Learning Objectives: Toward a 1D Device Model

1. Describe the difference between “Energy Conversion Efficiency” and
“Quantum Efficiency.”

2. Describe common factors that cause solar cell IV curves to deviate
from an ideal diode model: shunt & series resistance, recombination
currents, and current crowding.

3. Calculate series resistance for a solar cell.

Calculate the Fermi Energy of a solar cell as a function of dopant
concentration, illumination condition, and temperature.

5. Calculate carrier generation as a function of depth in a solar cell.

Calculate how material quality (minority carrier diffusion length)
affects QE and solar cell performance.

7. Create a 1D model for solar cell performance based on diffusion
length, optical absorption coefficient, surface reflectivity, and series &
shunt resistances.
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Key Concept:

“Energy conversion efficiency” is not the same thing as
“‘quantum efficiency”.

“Quantum efficiency (QE)” is defined as the number of electrons
out per incident photon. Note that QE is simply a census: it
does not take into consideration the energy of the electron or
photon.

QE is generally reported as a function of wavelength. QE is a
useful troubleshooting tool to identify why a device is
underperforming.

QE values can be quite high (between 60 and 99% for certain
wavelengths), and thus can be used by devious individuals to
misrepresent the conversion efficiency of their solar cell device.
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A Note about “Efficiency”

Qo

Courtesy of Edward H. Sargent. Used with permission.

e

Technical Terms:

- Solar Conversion Efficiency

- External Quantum Efficiency
- Internal Quantum Efficiency
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Solar Conversion Efficiency: Defined in Previous Slides

Power Out I -V FF-1_-V__

]7 = o P P =
Power In ) D

Typical values are 12—-20% for established technologies, <10% for most emerging
technologies.

n and @.: Vary with illumination intensity (e.g., 1 Sun)
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External Quantum Efficiency

Electrons Out
Photons In

EQE =

Typical peak values are 60-90%, depending on reflectivity, for moderate-efficiency
devices.

EQE highly wavelength- and illumination-dependent!

Buonassisi (MIT) 2011



External Quantum Efficiency

Here’s an example of a QE spectrum for a solar cell. Note the near-unity (i.e., 100%)
QE in the visible wavelengths.

Areduction of the overall QE is

4 caused by reflection and a low
diffusion length.

§‘1 0 y Ideal quantum
@ efficiency
= ,
= The red response is ¥
& reduced due to rear No light is absorbed
g surface passwat!on, below the band gap and
E reduced absorption at so the QE is zero at long
b long wave_lengths and ___ ., wavelengths.
a low diffusion lengths.

B
— _1 :IE Wavelength
Blue response is reduced due to front E
surface recombination. g
Courtesy of PVCDROM. Used with permission.

from PVCDROM

Buonassisi (MIT) 2011


http://www.pveducation.org/pvcdrom

Internal Quantum Efficiency

EQE _  Electrons Out
(1-R)  (Photons In)- (1-R)

... where R = Reflectivity

IQE =

Typical peak values between 80-98% for moderate-efficiency devices.

IQE highly wavelength- and illumination-dependent!
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Internal Quantum Efficiency

Reflectivity and IQE
(measured with different bias illumination)

Examples of illumination-dependent IQE measurements for a defect-rich
multicrystalline silicon solar cell. Minority carrier trapping results in low IQE with
low bias illumination.
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Approach “efficiency” with a grain of salt:

When an efficiency is quoted, think about:

- What “efficiency” is being measured?

- What is the nature of the light being used?
- What spectrometer to simulate solar spectrum?
- If monochromatic, what wavelength?
- What intensity (photon flux)?
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An example of honest efficiency
reporting

Please see the abstract from Huynh, W., J. Dittmer et al. “Hybrid Nanorod-
Polymer Solar Cells.” Science 295, no. 5564 (2002): 2425-7.
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http://dx.doi.org/10.1126/science.1069156
http://dx.doi.org/10.1126/science.1069156

Learning Objectives: Toward a 1D Device Model
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Describe the difference between “Energy Conversion Efficiency” and
“Quantum Efficiency.”

Describe common factors that cause solar cell IV curves to deviate
from an ideal diode model: shunt & series resistance, recombination
currents, and current crowding.

Calculate series resistance for a solar cell.

Calculate the Fermi Energy of a solar cell as a function of dopant
concentration, illumination condition, and temperature.

Calculate carrier generation as a function of depth in a solar cell.

Calculate how material quality (minority carrier diffusion length)
affects QE and solar cell performance.

Create a 1D model for solar cell performance based on diffusion
length, optical absorption coefficient, surface reflectivity, and series &
shunt resistances.
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Equivalent Circuit: Simple Case

ja
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Equivalent Circuit: Simple Case

J\/\/\/\"O I-V Curve
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Equivalent Circuit: Simple Case
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Key Concepts:

The ideal diode equation can be enhanced in two key ways:
1) We can add the effects of parallel resistance and series resistance.

2) Advanced Concept: Instead of one saturation current /,, there are usually two
saturation currents contributing to most solar cell devices: (a) one resulting from
carrier recombination in the space-charge region (dominant at lower forward bias
voltages) and (b) one resulting from carrier recombination in the bulk (dominant at
higher forward bias voltages). The “two-diode model” takes both saturation currents

into account. (V R ) (V R )
1 : J+J026Xp£q : J+V_JRS —J,

J=J, e
01 Xp[ n kT kT R,

Further Reading:

Green, Chapter 5

PVCDROM, Chapter 4: Solar Cell
Operationhttp://www.pveducation.org/pvcdrom/solar-cell-operation/solar-cell-structure

K. Mclntosh: “Lumps, Humps and Bumps: Three Detrimental Effects in the Current-Voltage
Curve of Silicon Solar Cells,” Ph.D. Thesis, UNSW, Sydney, 2001
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IV Curve Measurements

Several IV curves for real solar cells, illustrating a variety of IV responses!

#14

#100

#124

FZ, e.s.r. 79-87 Q/sq.
#9

#14

#100

FZ, e.s.r. 85-101 Q/sq.
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Fill Factor
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Why Fill Factor (FF) Matters:

This is a sample IV curve for a high-efficiency solar cell: High FF.

Current,
Power Cell with High Fill Factor
Isc
(Vmp, Imp)
FF=ImpxV¥mp
IscxVoc
=areaf
areaB

O -
Voc Voltage

Courtesy of PVCDROM. Used with permission.
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http://www.pveducation.org/pvcdrom

Why Fill Factor (FF) Matters:

This is a sample IV curve for a low-efficiency solar cell (same I,_and V_,
but lower FF).

Current,
Power Cell with Low Fill Factor

Isc

FF=ImpxVYmp
IscxVoc
=area A
areaB

O -
VYoc Voltage

Courtesy of PVCDROM. Used with permission.
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http://www.pveducation.org/pvcdrom
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Effect of Low Shunt Resistance (R,,)

gV +JR)) V+JR

shunt
Source. http://www.pveducation.org/pvcdrom/solar-cell-operation/shunt-resistance

Courtesy of PVCDROM. Used with permission. ..
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Physical Causes of Shunt Resistance (R)

Paths for electrons to flow from the emitter into the base. Can be
caused by physical defects (scratches), improper emitter formation,
metallization over-firing, or material defects (esp. those that traverse

the space-charge region).

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

For more information: See publications by Dr. Otwin Breitenstein (Max-Planck Institute in Halle,
Germany) on use of lock-in thermography for shunt detection and classification in solar cells.
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http://www.sciencedirect.com

Effect of High Series Resistance (R,)

qV+JR) | V+JR, NB: IV curve
kT R flipped!

shunt

Source: http://www.pveducation.org/pvcdrom/solar-cell-operation/series-resistance

J=J, —J, exp(

Courtesy of PVCDROM. Used with permission. Buonassisi (MlT) 2011
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Learning Objectives: Toward a 1D Device Model

1. Describe the difference between “Energy Conversion Efficiency” and
“Quantum Efficiency.”

2. Describe common factors that cause solar cell IV curves to deviate
from an ideal diode model: shunt & series resistance, recombination
currents, and current crowding.

3. Calculate series resistance for a solar cell.

4. Calculate the Fermi Energy of a solar cell as a function of dopant
concentration, illumination condition, and temperature.

5. Calculate carrier generation as a function of depth in a solar cell.

Calculate how material quality (minority carrier diffusion length)
affects QE and solar cell performance.

7. Create a 1D model for solar cell performance based on diffusion
length, optical absorption coefficient, surface reflectivity, and series &
shunt resistances.
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Components of Series Resistance

vAg

Front Contact Grid

25

T

Front Contact Grid
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/ —
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Bulk Current

Base (bulk)

Back Contact
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Components of Series Resistance

vAg
A
Line Losses p Q
N v
Front Contact G\\ Lateral Current ~ Front Contact Grid
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Components of R.:
Bulk Resistance

(i.e., How to choose absorber thickness)



Components of Series Resistance
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A
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Bulk (Base) Resistance

Resistivity:

Base Resistance: R, = p—

q = charge
n = carrier density
L = carrier mobility

NE length of conductive path
A = Area of current flow

0 = base resistivity

NB: Beware of non-linearities! (e.g., dependence of u on n).

29
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Components of R.:
Emitter Sheet Resistance

(i.e., How to design front contact metallization)



Components of Series Resistance
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Emitter Sheet Resistance

Bulk Resistivity is defined according to the following expression:

1 p = resistivity
= U = carrier mobility
q- U N N = Carrier concentration (dopant concentration)
Units of p: Q-cm

For a thin layer, a “sheet resistance” can be described:

1

x = layer thickness

Ps =
Units of p;: Q , or Q/L]
qf 1, (x)- Np(x)dx ’

0
For uniform layers,
a simplification:
1

Ps =

32
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Sheet Resistance Losses

dy
bird’s eye =
view of solar : :
cell device I
< I
o+ 11 . 4+
— < 1 : b ®
< I : =
S B S
H
11
11
S/2

The total power loss is thus:

SR 12722 2 3
J°b J°bp S
})IOSS — J-IZdR — jz 2/ ps dy = pS
0

24
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Sheet Resistance Losses

dy
bird’s eye =
view of solar I
. 1]
cell device I
< T
1] .
< I ; b
€ I . c
S I S
¥
1]
S/2

At the maximum power point, the generated power in the emitter ROl is: Vmmepb 5/2

Hence, the fractional power loss at the maximum power point (MPP) is:

2
p: ])loss :'OSS Jmp
P, 12V
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Sheet Resistance Losses

dy
bird’s eye =
view of solar I
. 11
cell device I
< T
11 .
< T ; b
c I : c
S I S
¥
11
S/2

Consider a solar cell with p; = 40 Q/U], J,,, = 30 mA/cm?, and V,,, = 450 mV.
If we want less than a 4% power loss (i.e., p < 0.04) through the emitter, then

12p V Agrees with finger
mp spacing in commercial
S < ,0 J o 4 mim solar cells!
S~ mp
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Components of R.:
Contact Resistance



Components of Series Resistance
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Method to Measure Contact Resistance (TLM Method)

Sequential measurements of resistance between reference finger and measured finger.

slope = R,

H"\

[
>

} intercept = 2R,
1d; 2d; 3d; 44
R, = contact resistance Contact distance

Total resisatnce R,

[
L

Figures courtesy of Stefan Kontermann

Courtesy of Stefan Kontermann. Used with permission.
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Components of R.:
Line Losses



Components of Series Resistance

vAg
+ ¥
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Line Losses

Line Resistance:

Resistivity (Ohm-cm)

1.E-06

1.E-07

1.E-08

1.E-09

1.E-10

Resistivities of Common Materials

R, =

= length of conductive path
A = Area of current flow
0 = metal resistivity

Silver i

Copper |
Aluminum B
Tungsten I

Iron I

Platinum I

Lead

Manganin I

Constantan T

Mercury N

Nichrome I

Graphite
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Learning Objectives: Toward a 1D Device Model

1. Describe the difference between “Energy Conversion Efficiency” and
“Quantum Efficiency.”

2. Describe common factors that cause solar cell IV curves to deviate
from an ideal diode model: shunt & series resistance, recombination
currents, and current crowding.

3. Calculate series resistance for a solar cell.

Calculate the Fermi Energy of a solar cell as a function of dopant
concentration, illumination condition, and temperature.

5. Calculate carrier generation as a function of depth in a solar cell.

Calculate how material quality (minority carrier diffusion length)
affects QE and solar cell performance.

7. Create a 1D model for solar cell performance based on diffusion
length, optical absorption coefficient, surface reflectivity, and series &
shunt resistances.
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Question: When | illuminate my
device, do | perturb the band
structure or Fermi energy?
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Calculate Fermi Energy (function of
dopant + illumination +
temperature)
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Conductivity

Band Diagram (E vs. x)
Density of States

Energy

Density of States

»

Courtesy Christiana Honsberg and Stuart Bowden. Used with permission.
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http://pvcdrom.pveducation.org/

Conductivity: Dependence on Temperature

At absolute zero, no conductivity (perfect insulator).

Band Diagram (E vs. x) Density of States
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Conductivity: Dependence on Temperature

At T > 0 K, some carriers are thermally excited across the bandgap.

Band Diagram (E vs. x) Density of States
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1 1 1

| | |

| |

: | | 8

| | | EI:J

| | | Ll

| | |

| | |

| | |
o000 00 000 o
00000000OCGOOGCS
00000000OCGOOGCS

Density of States

o

47 -
Courtesy Christiana Honsberg and Stuart Bowden. Used with permission. Buonassisi (MIT) 2011



Conductivity: Dependence on Temperature

At T > 0 K, some carriers are thermally excited across the bandgap.

Thermally
Band Diagram (E vs. x) excited Density of States
electrons
O
o o o
A A A
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Conductivity: Dependence on Temperature

At T > 0 K, some carriers are thermally excited across the bandgap.

“Intrinsic”
Carriers

Band Diagram (E vs. x) Density of States
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Temperature Dependence of Intrinsic Carrier Concentration

Arrhenius Equation,

© source unknown. All rights reserved. This content is excluded from our Creative genenc form:

Commons license. For more information, see http://ocw.mit.edu/fairuse.
N=N, exp|-E, /k,T]

Buonassisi (MIT) 2011
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http://ocw.mit.edu/fairuse

Temperature Dependence of Intrinsic Carrier Concentration

Arrhenius Equation,
generic form:

© source unknown. All rights reserved. This content is excluded from our Creative N — NO * e)q) [_EA /ka]

51 Commons license. For more information, see http://ocw.mit.edu/fairuse. Buonassisi (MlT) 2017



http://ocw.mit.edu/fairuse

Conductivity: Dependence on Temperature

At absolute zero, no conductivity (perfect insulator).

Probability
e . Density of States
Distribution y
1 Function 1
Conduction Band
Z T=0 &
(] ()
S 5
Valence Band
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Conductivity: Dependence on Temperature

At a finite temperature, finite conductivity (current can flow).

Probability Occupied
e oep s Density of States .
Distribution y Density of States
1 Function 1 1
Conduction Band Conduction Band
T>0
Z Z _ @
X ¢ = ¢
Valence Band Valence Band

y

3 probability of Occupancy Density of States . Density of Stat&&i (viT) 2011



Conductivity: Dependence on Temperature

At a finite temperature, finite conductivity (current can flow).

Probability
Distribution
Function

Fermi-Dirac
Distribution

Energy
[
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Energy
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To reduce noise in a Si CCD camera, should
you increase or decrease temperature?
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Lower Temperature = Lower Intrinsic Carrier Concentration

L @R TT 33878 l | 930 SR 1 I Y G O [ 550§
Ir s i CCD inside a LN dewar
0.8 =
0.6 - o
0.4 |- - |
0.2 - - R~ /A=
0 l; b i \
- - http://msowww.anu.edu.au/observing/detectors/wfi.php
.. B B4 l | O ISW W | l | W33 U WD | l 2.8 _4 .o} l RN -0 _J§ C fTh A | N |U U d h
ourtesy o e Australian National University. Used with permission.
0 1 2 3 4 )
€/ 1
Public domain image (Source: Wikimedia Commons).
s http://www.answers.com/topic/semiconductor
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Question: Transistors made from which
semiconductor material experience greater
electronic noise at room temperature:
Germanium or Silicon?

Buonassisi (MIT) 2011



Intrinsic Conductivity: Dependence on Bandgap

At a finite temperature, finite conductivity (current can flow).

Probability
e e Density of States
Distribution y
Function b/
- T>0 -
& 2| Silicon Bandgap ~ 1.12 eV
C [

%8 Probability of Occupancy Density of States g, onassisi (MIT) 2011



Intrinsic Conductivity: Dependence on Bandgap

At a finite temperature, finite conductivity (current can flow).

Probability
Distribution
Function

T>0

Energy

59 Probability of Occupanc§/

Energy

Density of States

Germanium Bandgap ~ 0.67eV

Density of States Iguonassisi (MIT) 2011



Intrinsic Conductivity: Dependence on Bandgap

Please see table at https://web.archive.org/web/20130818190346/
http://www.siliconfareast.com/sigegaas.htm

% Buonassisi (MIT) 2011
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