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2.626/2.627: Fundamentals

Every photovoltaic device must obey:

Output Energy

Conversion Efficiency (77) = ——
nput Energy

For most solar cells, this breaks down into:
Inputs Outputs

Solar Spectrum Light Charge Charge
P Absorption Excitation Separation Collection

ntotal — nabsorption X nexcitation X ndﬁﬁ/diﬂhsion X nseparation X ncollection
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Liebig’s Law of the Minimum

S. Glunz, Advances in
Optoelectronics 97370
(2007)

Image by S. W. Glunz. License: CC-BY. Source: "High-Efficiency Crystalline Silicon Solar Cells." Advances in OptoElectronics (2007).

ntotal — 77absorption X nexcitation X ndﬁﬁ/diﬂilsion X nseparation X ncollection
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http://dx.doi.org/10.1155/2007/97370
http://dx.doi.org/10.1155/2007/97370
http://dx.doi.org/10.1155/2007/97370

Another system in which all parts must be optimized

http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/ligabs.html

http://en.wikipedia.org/wiki/Photosynthetic efficiency

6 Image by Bensaccount on Wikipedia. License: CC-BY-SA. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. Buonassisi (MIT) 2011



http://en.wikipedia.org/wiki/Photosynthetic_efficiency
http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/ligabs.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/ligabs.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/ligabs.html
http://en.wikipedia.org/wiki/File:Z-scheme.png
http://ocw.mit.edu/fairuse

Learning Objectives: llluminated Solar Cell

1. Diode in the Dark: Construct energy band diagram of pn-
junction.

2. Diode under illumination: Construct energy band
diagram. Denote drift, diffusion, and illumination
currents.

3. Inclass exercise: Measure illuminated IV curves.

Define parameters that determine solar cell efficiency:
e Built-in voltage (V,,)
e Biasvoltage (V)
e Open-circuit voltage (V)
e Short-circuit current (J, )
e Saturation (leakage) current (J,)
e Maximum power point (MPP)

' e Fill factor (FF) Buonassisi (MIT) 2011



Key Concept:

The current-voltage response of an ideal pn-junction can be
described by the “Ideal diode equation”. We plot the ideal diode
equation for dark and illuminated cases. Forward, reverse, and
zero bias conditions are represented on the same curves.
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Exercise: pn-junctions under bias

* For a pn-junction under different bias conditions,
* Draw I|-V curves for the solar cell.
* With a dot, denote the “operating point” for each bias
condition.
* With arrows, denote the magnitude of the the saturation
current (/,).
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Exercise: pn-junctions under bias

* For a pn-junction under different bias conditions,
* Draw equivalent circuit diagrams for each bias condition.

* Draw the external bias (V,).

* Draw the relative width of the space-charge region.

* Draw an arrow for the electric field (£). Relative
magnitudes of the arrows correspond to relative
magnitudes of the electric fields.

* Draw the direction of current flow (/).

* Draw the direction of electron flow.
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pn-junction, in the dark

1"

2.626/2.627 Lecture 5 (9/22/2011)
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pn-junction, under illumination

2.626/2.627 Lecture 5 (9/22/2011)
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Ideal Diode Eq uation Following the derivation in Green (Ch. 4, Eq. 4.43):

Modeled Dark and llluminated IV Curves

0.5
5 V/kT
3 / Dark 7 _ I (eq _ 1)
2 0
e
5
Q
05 = llluminated

I=1,""" =1)-1

-0.1 -0.05 0 0.05 0.1
Voltage (a.u.)

Curves designed using ideal diode equation, with /,=0.1 (a.u.), and /_ = 0.6 (a.u.).
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Graphical Representation of Variables

Dark _ qV/kT
N I=1I,(e 1)

IHluminated

l, [:]O(qu/kT _1)_]L

Curves designed using ideal diode equation, with /,=0.1 (a.u.), and /_ = 0.6 (a.u.).
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Graphical Representation of Bias Conditions
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Curves designed using ideal diode equation, with /,=0.1 (a.u.), and /_ = 0.6 (a.u.).
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Readings are strongly encouraged

* Green, Chapter 4

* http://www.pveducation.org/pvcdrom/,
Chapters 3 & 4.
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http://www.pveducation.org/pvcdrom/

Learning Objectives: llluminated Solar Cell

17

1.

Diode in the Dark: Construct energy band diagram of pn-
junction.

Diode under illumination: Construct energy band diagram.
Denote drift, diffusion, and illumination currents.

In class exercise: Measure illuminated IV curves.
Define parameters that determine solar cell efficiency:
e Built-in voltage (V,,)

e Biasvoltage (V,..)

e Open-circuit voltage (V,.)

e Short-circuit current (J,)

e Saturation (leakage) current (J,)

e Maximum power point (MPP)

e Fill factor (FF)
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Hands-On: Measure Solar Cell IV Curves
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Printed Circuit Board Layout
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PCB Section 1a: Sweep Voltage — Program
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PCB Section 1b: Sweep Voltage — Sweep
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PCB Section 2a: Measure Current — Change to Voltage
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PCB Section 2a: Measure Current — Rescale 0 - 5V

- Summing Amplifier
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PCB Section 2a: Measure Current — Read Current
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Learning Objectives: llluminated Solar Cell
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1.

Diode in the Dark: Construct energy band diagram of pn-
junction.

Diode under illumination: Construct energy band diagram.
Denote drift, diffusion, and illumination currents.

In class exercise: Measure illuminated IV curves.

Define parameters that determine solar cell efficiency:
e Built-in voltage (V)

e Bias voltage (V)

e Open-circuit voltage (V)

e Short-circuit current (J,)

e Saturation (leakage) current (J,)

e Maximum power point (MPP)

e Fill factor (FF)
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How Solar Conversion Efficiency is
Determined from an IV Curve



Terminology

* Often, PV researchers will report a “current density”
(current per unit area, e.g., mA/cm?) in lieu of “total
current”. Normalizing for geometry makes it easier to
compare the performance of two or more devices of
similar semiconductor materials but different sizes.

* The variable “I” is typically used to represent “current”,
while the variable “J” represents “current density”. Thus,
you may well see “JV curves” reported in the literature.

29
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Key Concept:

“Conversion efficiency” of a solar cell device can be determined
by measuring the IV curve. Just three |V-curve parameters are
needed to calculate conversion efficiency: Short-circuit current
density (J,., the maximum current density of the device in short-
circuit conditions), open-circuit voltage (V,., the maximum
voltage produced by the device, when the two terminals are not
connected), and fill factor (ratio of “maximum power” to the

J.." V. product).

30
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Efficiency Calculations

Illuminated JV Curve

Current Density (J)

\JzJo(qu”‘T ~1)-J,

0 0.1 0.2 0.3 0.4 0.5 0.6
Voltage (V)
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Efficiency Calculations

Illuminated JV Curve

Current Density (J)
wn
'9)

0 0.1 0.2 0.3 0.4 0.5 0.6
Voltage (V)
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Efficiency Calculations

ated JV Curve

Current Density (J)

0 0.1 0.2 0.3 0.4 0.5 0.6
Voltage (V)
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Efficiency Calculations

Industry Convention: Quadrant flipped!

llluminated JV Curve

=
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Efficiency Calculations

Illuminated JV Curve
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Efficiency Calculations

Illuminated JV Curve
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Efficiency Calculations

Illuminated JV Curve

Current Density (mA/cm?)
Power Density (mW/cm?)
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Efficiency Calculations

Illuminated JV Curve

Current Density (mA/cm?)
Power Density (mW/cm?)
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Efficiency Calculations

By combining equations 1 and 2...

Power Out Vi ™ Lp

Efficiency =n =

Power In b

V .1 V . J
Fill Factor=FF =—2%® ™ _ _™
Voc. [sc V0C° Jsc

We obtain:

Power Out Vi Ly, FF-V,.- 1
Power In () )

Efficiency =71 =
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Why does Efficiency matter?
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Key Concept:

“Conversion efficiency” effectively determines the area of solar
collectors needed to produce a given amount of power.

Since many costs scale with area (e.g., glass, encapsulants,
labor, mounting, framing... pretty much everything but the
inverter), increasing conversion efficiency is a highly leveraged
way to reduce the cost of solar.

41
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The Area Needed to Produce A Certain Amount of Power
Scales with Efficiency

33% efficiency

100% efficienc
° y (space-grade solar cells)

(impossible to achieve)

Expensive
material
20% efficiency
(monocrystalline
silicon solar cells) 10% efficiency

(thin film material)

Expensive
material

42 Relatively Inexpensive material
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The Cost of Materials (Glass, Encapsulants...) Scales with the
Area, i.e., Inversely with Efficiency

See: T. Surek, Proc. 3@ World Conference on Photovoltaic Energy Conversion (WCPEC), Osaka, Japan (2003)

43
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