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2.626/2.627: Fundamentals

Every photovoltaic device must obey:

Output Energy
Input Energy

Conversion Efficiency (7) =

For most solar cells, this breaks down into:
Inputs Outputs

Charge
B Spedrur»»»coedm>

77tota| — nabsorption X nexcitation X ndrift/diffusion X nseparation X ncollection
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Liebig’s Law of the Minimum

S. Glunz, Advances in
Optoelectronics 97370
(2007)

Image by S. W. Glunz. License: CC-BY. Source: "|-|igh-Efficiency Crystalline Silicon Solar Cells." Advances in OptoElectronics (2007).

77total — nabsorption X nexcitation X ndrift/diffusion X nseparation X ncollection
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http://dx.doi.org/10.1155/2007/97370

Learning Objectives: Light Absorption (Optical Losses)

e Calculate reflectance and non-absorption optical losses of a
solar cell
e Calculate reflection of an interface (semi-infinite)
 Calculate the absorption/transmittance through layer
e Describe the physical underpinnings and implementation of
four advanced methods of reducing optical losses
 ARC/interference
e Texturization
* Reflective interfaces
e Thickness
e Plasmonics/photonics
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Light Management in Solar Cells: The Big Picture

* Photons that aren’t absorbed can’t be
used to create useful energy. (not
absorbed means transmitted or
reflected.)

* Only absorbed energy can make useful
energy, thus we want to maximize this

fraction!
Incident Energy

Reflected Energy

Transmitted Energy
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Photons — Quanta of Light

eQuantum theory describes the Relevant Equations:
frequency dependence of photon he
energy. Eph —hy=—
A
Particle-wave duality: h
Photons have discrete quanta of energy. p — hk —
Photons have momentum. ph yl

Light can be polarized.

Light can be diffracted.

Light waves can destructively and
constructively interfere.
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Photons — Quanta of Light

eQuantum theory describes the
frequency dependence of photon
energy.

*Visible photon wavelengths are in
the hundreds of nanometers (nm)
(solar spectrum peak ~ 550 nm).

*Visible photon energies are in the
range of 0.6-6 electron volts (eV)
(solar spectrum peak ~2.3 eV)

Relevant Equations:

ph

hv

_he

RN
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Low-Energy Photon-Matter Interactions

e At low energies (single eVs) typical for visible light, photons
interact primarily with valence electrons.

http://friends.ccathsu.com/bart/solarcooking/p
arabolic/parabolic_solar_cooker_pg_3_html.htm

Courtesy of Humboldt Campus Center for
Appropriate Technology. Used with permission.
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Interactions of Visible Light with Matter

Interactions of visible light with matter can be described by the
index of refraction, which is a complex number:

N, =n+ik

10
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Interactions of Visible Light with Matter

Interactions of visible light with matter can be described by the
index of refraction, which is a complex number:

n. =n+ik
®) @)
@
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Interactions of Visible Light with Matter

Interactions of visible light with matter can be described by the
index of refraction, which is a complex number:

n, =n+ik

Real and Imaginary components of the index
of refraction are wavelength-dependent, and
are typically measured using a measurement
technique called spectroscopic ellipsometry.

Sample

Courtesy of HOLMARC. Used with permission.
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Photons — Reflections off a Surface

At visible wavelengths, the

fraction of reflected light

depends most strongly on the

real component of the index of
| ]R refraction:

Air

13
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Mechanical Engineering Analogy

14

Change in index of
refraction (ignoring
absorption) is
similar to reflection
of string wave at
interface! Replace n
with z = p*c.
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Concept Question

Tinted window questions:
*\Why can’t you see inside?
*|f the glass pane was flipped, would this
change anything?



Bulk Absorption

Beer-Lambert’s Law Demo



Photons — Transmission Through a Medium

Medium

Light Intensity

Position

Simple Derivation of Beer-Lambert’s Law:

dl, =—0-N-dz

Inz(lz)z—(c)'- N-z)+C
In(ly)—In(l,)=—(c-N-0)+C+(c-N-)+C=0-N-I
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Photons — Transmission Through a Medium

Medium
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a is a function of the wavelength of light, and property of the medium.
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Absorption Coefficient (. ) for different materials
=1, -

Absorption Coefficient of Semiconductor Materials
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http://www.pveducation.org/pvcdrom

Methods to Improve Optical Absorption
(Light Management Methods)

e Antireflection coatings (ARCs)

e Snell’s Law

e Texturization

e Back surface reflection, total internal reflection
e Plasmonics

* Phase shifting

20
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1. Texturization

Multiple reflections on
surface:

* Increase probability that
light enters device.

* Increase effective path
length of incoming light.

21

AN

Flat Silicon Substrate Textured Silicon Substrate

In a textured surface, rather than being lost, the

reflected light can strike the siilcon sirface again, Click to Repeat |
thus reducing the reflection to R2I.

PV CDROM

Courtesy of PVCDROM. Used with permission.
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http://www.pveducation.org/pvcdrom

Snell’s Law

A change in refractive indices results in a “bending” of light.

B. Textured Back Surface

Total internal reflection

| =

Snell’s Law:
n,sing, =n,siné,

To engineer front & back surface reflectance, carefully select
refractive indices!

22
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Snell’s Law & Reflectance: Pool Example

o G
e

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

Pool filled with water n =1.3 Pool filled with substance Pool filled with negative
having n =0.9 index material n =-1.3

Dominant Effect: Reflection Dominant Effect: Refraction

A. Textured Front Surface
_-——-'—'-_-’ \

Snell’s Law:

n,sinf, = n,sin6,

23
http://spie.org/x34206.xml?ArticlelD=x34206 Buonassisi (MIT) 2011


http://spie.org/x34206.xml?ArticleID=x34206
http://ocw.mit.edu/fairuse

Lambertian Reflector

0
el er
i
Diffuse (lambertian) reflector Specular reflector

Incident ray

————p Reflected ray

Image by MIT OpenCourseWare.

http://www.ecse.rpi.edu/~schubert/Light
Emitting-Diodes-dot-org/chap10/chap10.htm

24
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Lambertian Reflector

light less than the critical angle

incoming light escapes from the cell

Light in a cone with apex

angle equal to the critical

angle is lost light is totally internally reflected
\ and trapped inside the cell

AY

random reflector on rear of cell
Courtesy of PVCDROM. Used with permission.

http://www.pveducation.org/pvcdrom/design/lambertian-rear—reclectors

25
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Total Internal Reflection

A. Textured Busbar B. Textured Back Surface

Total internal reflection

| =

Courtesy of 1366 Technologies. Used with permission.

White backskin, textured busbar on modules helps with light
capture (via total internal reflection)!

Yablonovitch Limit: 4n? = maximum increase in optical path length
E. Yablonovitch & G.D. Cody, IEEE Trans. Electron Dev. 29, 300 (1982)
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Antireflection Coatings (ARCs)

(a) destructive interference (b) _constructive interference so
so no reflected wav all light reflected
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all light transmitted into no light transmitted into
semiconductor semiconductor

Courtesy of PVCDROM. Used with permission.

For source and animation, see: http://pveducation.org/pvcdrom/design/anti-reflection-coatings
27
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Antireflection Coatings (ARCs)

' ’
4 R,

Image by erob on Wikipedia. License: CC-BY-SA. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
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http://ocw.mit.edu/fairuse
http://commons.wikimedia.org/wiki/File:Optical-coating-2.svg

Antireflection Coatings (ARCs)

29

} Optimal ARC film thickness:
A

0

40
where A, is photon wavelength at the peak
of the solar spectrum

t

Qualities of an optimized ARC:

Index of refraction between absorber and superstrate (air, glass)

Thickness on the order of a quarter wavelength (normalized for refractive
index).

Stable

Enhances electrical performance by passivating dangling bonds at the
surface and repelling charges from the surface (e.g., through fixed charges).
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Photons — Reflections off a Surface
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Image by MIT OpenCourseWare.
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Thin films require accounting of Phase
information

* When EM waves (light) are interacting with
matter that has interfaces that are spaced
very close together, we need to account phase
information when understanding how light
moves through a medium.

e We do this to account for destructive and
constructive interference.
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Importance of SiN, thickness
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Note that minima appear at A/(2n) intervals!

Buonassisi (MIT) 2011



Spectral Reflectivity for Optimized SiN,
optimized at 550nm
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33 When SiNx thickness is optimized for a specific wavelength, other wavelengths suffer!
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Equations Governing Thin Film

- Reflectance
‘)
Ry
' : 2 2
\ ,, . I, + I, + 21,1, COS2¢,
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n2
I =
\ n; +N,
all light trdanstmitted into ¢ — 2]:[nld
Courtesy of PVCDROM. Used with permission. ! ﬂ/


http://www.pveducation.org/pvcdrom

ARC: Impact on Reflectance
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Courtesy of PVCDROM. Used with permission.
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Ray Tracing Software

RaySim (free!):
http://www?2.pv.unsw.edu.au/Links/RaySim6/Home
PfRaySim6.htm

More sophisticated analysis (incl. non-linear effects):
Finite difference time domain (FDTD) method (good for
large frequency ranges)

36
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Light Management

e “Light Management” Ensures Absorptance is High.
e Ensuring that light enters the absorber (minimize reflection).
e Ensure good light trapping inside the absorber.
e Light trapping methods described on previous slide.
e Change wavelength of incoming light to enhance optical
absorption coefficient.
* Change optical absorption coefficient of material by
manipulating band structure.

Absorption Coefficient of Semiconductor Materials
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http://www.pveducation.org/pvcdrom

Light Management is Necessary

38
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Courtesy of [PVCDROM. Used with permission.

http://www.pveducation.org/pvcdrom/design/lambertian-rear-reclectors
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Light Management is Necessary

SunPower Solar Cell

Lightly doped front diffusion
« Reduces recombination loss  Texture + ARC

FRONT
N-TYPE HIGH UFETIME SIUCON
BACK
Localized Contacts/ Passivating
Backside Miror , paqices contact | SiO, layer
* Reduces back light - o ombjination loss /| * Reduces surface
absorption & causes recombination loss
light trapping
Backside Gridlines
» Eliminates shadowing
» High-coverage metal
reduces resistance loss

© SolarCellCentral. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
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“Bending Light” via Anomalous Refraction

Yu, N., P. Genevet et al. Light Propagation with Phase
IDiscontinuities: Generalized Laws of Reflection and Refraction.”

Science 334, no. 6054 (2011): 333-337.
Photon Up/Down Conversion

Jennifer Dionne (“Polar Cells That See More Light”), one of
Technology Review’s Innovators Under 35.

Alombert-Goget, G., D. Ristic et al. "Rare-Earth Doped Materials

Enhance Silicon Solar Cell Efficiency." SPIE Newsroom, 2011.

(a)
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© SPIE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
|http://ocw.mit.edu/fairuse. Source: Alombert-Goget, G., D. Ristic et al. "Rare-Earth Doped Materials Enhance Silicon
Solar Cell Efficiency." SPIE Newsroom, 2011. DOI: 10.1117/2.1201105.003701.
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