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Why Solar?



Energy: Fuel for Development
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Figure 1.2. Human development index vs. per capita electricity use for selected countries. Taken
from S. Benka, Physics Today (April 2002), pg 39, and adapted from A. Pasternak, Lawrence
Livermore National Laboratory rep. no. UCRL-ID-140773.

© American Institute of Physics. All rights reserved.

This content is excluded from our Creative Commons license.
For more information, see |http://ocw.mit.edu/fairuse.
Source: Benka, Stephen G. |The Energy Challenge." Physics
Today 55 (April 2002): 38-39.

— — ]
w (=] W <

per capita energy use (TJ/yr)

=}
[

100

1,000
per capital income (GDP)

10,000 100,000
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© David Roland-Hoist. All rights reserved. This content
is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/fairuse.
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2011: 7 Billion People
2050: 7.5-11 Billion People

Human Energy Use
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Solar Resource

April 1984-1993
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Image courtesy NASA Earth Observatory.
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Solar Supply Well Matched to Future Energy Demand

April 1984-1993
Solar Insolation (kWh/m?/day)

Ihttp://eosweb.larc.nasa.gc;\;/sse/

Image courtesy NASA Earth Observatory.
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Solar Resource Base

Solar Energy Resource Base
1.5x10'8 kWh/year
1.7x10° TW,,,

Solar Resource on
Earth’s Surface

5.5x10'7 kWh/year
3.6x10° TW,,,

References:
Wind Energy: C.L. Archer and M.Z. Jacobson, J.
Geophys. Res. 110, D12110 (2005).

Wind Energy
Resource Base
6x10'4 kWh/year
72TW,,,

)

Human Energy Use
(mid- to late-century)
4x10'* kWh/year
50TW,,,



Potential of Solar Energy

The Sun is able to support TWs of demand:
Average 9x10* TW incident on Earth; 450 TW practical to recover.

http://www.answers.com/topic/solar-power-1
Image by IVIino76. License: CC-BY

18 TW = 6 Dots at 3 TW Each
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Residential Installations

Solar Panels

Inverter

Existing Circuit Breaker Utility meter
Panel

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
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Photovoltaics: Historical Perspective and
Current Challenges



Rich History of Innovation

1839: Discovery of photovoltaic effect
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Courtesy of PVCDROM. Used with permission.
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Memoire sur les effets électriques pi oduits sous Hgﬂzwme des rayons
solaires; par M. Epmono Brcousrir.

E. Becquerel, “Mémoire sur les effets électriques produits sous l'influence des rayons
solaires,” Comptes Rendus 9, 561-567 (1839)
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Rich History of Innovation

1877: Photoelectric effect
in solid system

light

Pt wire

i S
N vitreous Se

T )

\ glass tube

label « 0.6-2.5cm -»

W.G. Adams and R.E. Day, “The Action
of Light on Selenium,” Proceedings of
the Royal Society A25, 113 (1877)

1883: Photovoltaic effect
in sub-mm-thick films

Au leat

Se layer

metal plate

(eg.brass)

C.E. Fritts, "On a new form of selenium
photocell", Proc. of the American
Association for the Advancement of
Science 33, 97 (1883)

Courtesy of PVCDROM. Used with permission.

Images from:|http://pvcdrom.pveducation.org/MANUFACT/FIRST.HTM

glass pressure plate

1927: Evolution of solid-
state PV devices

-----

Pb wire coil

L.O. Grondahl, "The Copper-Cuprous-
Oxide Rectifier and Photoelectric
Cell", Review of Modern Physics 5,
141 (1933).
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Photovoltaic Device Fundamentals

(1) Charge Generation: Light excites (2) Charge Separation: An electric field
electrons, freeing them to move engineered into the material (pn
around the crystal. junction) sweeps out electrons.

(3) Charge Collection: Electrons Advantages: There are no moving parts
deposit their energy in an external and no pollution created at the site of
load, complete the circuit. use (during solar cell production, that’s

another story).

Disadvantages: No output at
night; lower output when
weather unfavorable.

antireflection coating

Fq front contact

emitter
sunlight

external
load * base
Q9

electron-hole
pair

rear contact Courtesy of PVCDROM. Used with permission.
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How Solar Has Evolved Since Your Parents
First Heard of It



Convergence Between PV and Conventional Energy
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Cumulative PV Electricity Production (MWh)

US electricity prices and levelized cost of electricity produced from PV modules. Source: G.F. Nemet,
Energy Policy 34, 3218-3232 (20006).

Courtesy of Elsevier, Inc., |http://www.sciencedirect.com. Used with permission.
Large PV cost reductions over the past few decades were driven by (1)
innovation in technology, manufacturing, and deployment, (2) increased
scale, and (3) lower-cost materials.
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Innovation: Driving Force in PV Cost Reduction

Cumulative production GigaWp
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Source: Behind the learning curve. G. Nemet, UC Berkeley

*Assumes annual production grows at 35%. Projected costs based on 18% learning curve.
Source: 1366 Technologies, presented at hearing of the US House Select Committee on
Energy Independence and Global Warming, July 28, 2009.
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Convergence Between PV and Conventional Energy
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Convergence Between PV and Conventional Energy
Figure 8: PV market deployment and competitiveness levels
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O&M costs 1%.

© International Energy Agency. All rights reserved. This content is excluded from our

Creative Commons license. For more information, see: http://ocw.mit.edu/fairuse. 18
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Convergence Between PV and Conventional Energy Scale
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plunge. PV manufacturing sustained by big oil (BP Solar, Mobil Tyco).
Scale (Phase IlI: 2000-2010, 48% CAGR) Strong government subsidies for

installation & manufacturing in JPN, DE, US, EU, CN. PV manufacturing led by

electronic (Sharp) & “pure-plays” (Q-Cells, First Solar, Suntech).
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Plot on previous page: “The coming convergence.” Data sources used:

World primary energy usage:
http://www.eia.gov/totalenergy/data/annual/index.cfm#international

PV production: Various, including Paul Maycock’s PVNews, http://www.iea-pvps.
org/index.php?id=trends, http://iet.jrc.ec.europa.eu/remea/pvnet-european-

roadmap-pv-rd, and http://www.pv-tech.org/news/solarbuzz_pv_installations_
reached_18.2gw_in_2010.
Websites accessed 2011.

For PV, TW .. to TW,, conversion assumes 1/6 PV capacity factor.
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Solar Energy Technology Framework



Motivation, explanation, and rationale of
framework

Buonassisi (MIT) 2011



Framework for the Solar Energy Technology Universe

Motivation:

Several hundreds of technologies
exist to convert solar radiant
energy into other usable forms that
perform work for humanity.
Please see lecture video for example images of each type of solar panel.
To make sense of this technology
space, and to produce meaningful
technology assessments and
projections, a technology
framework is helpful.

23
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Framework for the Solar Energy Technology Universe

Design Principles for the Technology
Framework:

Exhaustive categorization

Our technology framework must provide
a meaningful framework to categorize
90+% of solar energy technologies today.

30 years challenge

The fra mework ShOUId be time_ Please see lecture video for example images of each type of solar panel.
immutable, useful also in 30 years (within

which time solar may “come of age”).

Useful analysis tool

The framework must provide a tool to
economists and social scientists, to divide
the solar space into meaningful units that
can be analyzed independently.

24
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Division 1: According to Conversion Technology

Solar Energy Conversion Technology

Solar to Heat

. . Solar to Heat Solar to Fuels
Electricity

Solar to Electricity

Rationale:

Output-oriented
Focus on the delivered product (electricity, heat, fuels) naturally lumps similar

technologies together.

Exhaustive categorization(?)
There are only a limited number of known energy products useful to humanity.

Barring unexpected discoveries and harnessing of other energy forms (e.g., the
“gravity wave” scenario), this framework should continue to be useful in 30 years.

25
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Division 2: According to Moving Mechanical Parts

Solar Energy Conversion Technology

Solar to Heat

Solar to Electricity . . Solar to Heat Solar to Fuels
Electricity
Non- . Non- . Non- . Non- :
Tracking Tracking Tracking Tracking Tracking Tracking Tracking Tracking
Rationale:

Input-oriented
Focus on the method that solar energy is captured and converted into a usable form.

Moving parts
Tracking systems imply moving parts, which add to the complexity, cost, and maintenance of
solar systems, while increasing the output.

Why not “concentrating / non-concentrating”?

“Tracking” and “concentrating” are non synonymous. While concentrator systems add extra
capital equipment expenditure (capex), tracking systems add both extra capex and operating
expenses (opex).

26
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on to the assessment...

Buonassisi (MIT) 2011



Solar Energy Conversion Technology

Solar to Heat

. . Solar to Heat Solar to Fuels
Electricity

Solar to Electricity

Embodiments:
Photovoltaic device (solar cell).
Thermoelectric device

Buonassisi (MIT) 2011



Photovoltaic Device Fundamentals

(1) Charge Generation: Light excites (2) Charge Separation: An electric field
electrons, freeing them from atomic engineered into the material (pn
bonds and allowing them to move junction) sweeps out electrons.

around the crystal.

Advantages: There are no moving parts

(3) Charge Collection: Electrons and no pollution created at the site of
deposit their energy in an external use (during solar cell production, that’s
load, complete the circuit. another story).

Disadvantages: No output at
night; lower output when
weather unfavorable.

For animation, please see |http://micro.magnet.fsu.edu/primer/java/solarcell/

Buonassisi (MIT) 2011


http://micro.magnet.fsu.edu/primer/java/solarcell/
asin33
Line

asin33
Line

asin33
Line

asin33
Line


Technological Diversity

Please see lecture video for example images of each type of solar technology.

Kerfless Silicon Multijunction Copper Indium Gallium  Amorphous Silicon
Cells Diselenide (CIGS)
Dye-sensitized Silicon Sheet Cadmium Hybrid (nano)
Cells Telluride
Monocrystalline Multicrystalline High-Efficiency Organics
Silicon Silicon silicon

Buonassisi (MIT) 2011



Solar Energy Conversion Technology

Solar to Heat

Solar to Electricity s Solar to Heat Solar to Fuels
Electricity
Non- Non- Non- Non-
Tracki Tracki Tracki Tracki
Tracking — Tracking e Tracking e Tracking .

Two Sub-Groups:

1. Non-concentrating 2. Concentrating

Please see lecture video for example images of each type of solar technology.
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Solar Energy Conversion Technology

Solar to Heat

Solar to Electricity G Solar to Heat Solar to Fuels
Electricity
MNon- Non- Non- Non-
Tracki Tracki Tracki Tracki
Tracking B Tracking e Tracking = Tracking B

1. Non-concentrating, non-tracking

a. Roof-mounted b. Ground-mounted

Please see lecture video for example images of each type of solar technology.

Buonassisi (MIT) 2011



Solar Energy Conversion Technology

Solar to Electricity 5{;":;::;“ Solar to Heat Solar to Fuels

Non- Non- Non- Non-
Tracki Tracki Tracki Tracki
Tracking ek Tracking G Tracking e Tracking b

2. Concentrating, non-tracking

a. External (mounted) reflectors

Please see lecture video for example images of each type of solar technology.

Buonassisi (MIT) 2011



Solar Energy Conversion Technology

Solar to Electricity St;ill:::::;:;at Solar to Heat Solar to Fuels

Non- Non- Non- Mon-
| Tracki Tracki Tracki Tracki
Tracking TS Tracking RS Tracking ERE Tracking s

2. Concentrating, non-tracking

b. Internal reflectors

Please see lecture video for example images of each type of solar technology.

Sliver Cell (A.N.U.)

Solyndra

Buonassisi (MIT) 2011



Solar Energy Conversion Technology

.. Solar to Heat
Solar to Electricity Electricity Solar to Heat Solar to Fuels

Non- : Non- , Non- _ Non- -
Tracking e Tracking e Tracking T Tracking

2. Concentrating, non-tracking

c. Photon conditioning, internal reflectors

Wavelength

Small efficient selective mirror
solar cells /{/

Mirror

Dye impregnated
plastic waveguide

Image by MIT OpenCourseWare.

Luminescent Concentrator
Buonassisi (MIT) 2011



Solar Energy Conversion Technology

Solar to Electricity 5:‘;:::;“ Solar to Heat Solar to Fuels

Non- Non- Non- Non-
Tracki Tracki Tracki Tracki
Tracking fikll Tracking = Tracking s Tracking ks

The Basics of Tracking Systems:

One Axis Tracking Two Axis Tracking

4y
W '
/4

~ /)

/

|

Secondary axis
allows north-south
rotation

7

Axis allows Primary axis allows
east-west rotation east-west rotation

Image by MIT OpenCourseWare.
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Solar Energy Conversion Technology

Solar to Electricity 5;‘;:::::;“ Solar to Heat Solar to Fuels

Non- Non- Non- Non-
Tracki Tracki Tracki Tracki
Tracking Tracking s Tracking - Tracking R

Two Sub-Groups:

1. Not Concentrating 2. Concentrating

Please see lecture video for example images of each type of solar technology.

Buonassisi (MIT) 2011



Solar Energy Conversion Technology

. . Solar to Heat
Solar to Electricity Electricity Solar to Heat Solar to Fuels

Non- : Non- , Non- . Non- .
Tracking Iracking Tracking Tracking Tracking Tracking Tracking

1. Not concentrating, tracking

a. Photovoltaics

Please see lecture video for example images of each type of solar technology.
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Solar Energy Conversion Technology

. . Solar to Heat
Solar to Electricity Electricity Solar to Heat Solar to Fuels

Non- : Non- : Non- : Non- :
Tracking Tracking Tracking Tracking Tracking Tracking Tracking

2. Concentrating, tracking

a. (Frenel) Lenses

Please see lecture video for example images of each type of solar technology.

SunCube Mark 5 Solar Appliance
Green and Gold Energy of Australia
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Solar Energy Conversion Technology

. . Solar to Heat
Solar to Electricity Electricity Solar to Heat Solar to Fuels

Current embodiments

1.

Heat Engines*: Sunlight heats a fluid (e.g., pressurized water, nitrate salt,
hydrogen), which moves a turbine or piston, either directly or via heat exchanger.
Heat Exchangers*®

Thermoelectrics**: Visible sunlight converted into heat; temperature difference
between leads drives an electrical current.

Long-A PV: Visible sunlight converted into heat, which powers IR-responsive
photovoltaic devices.

* Hybrids Possible (e.g., combined cycle power plant): The above, in tandem

with another fuel (e.g., natural gas).

** Hybrids Possible (e.g., with solar cells)
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Solar Energy Conversion Technology

Solar to Heat

Solar to Electricity . Solar to Heat Solar to Fuels
Electricity
Non- Non- Non- Non-
Tracki Tracki Tracki Tracki
Tracking Sl Tracking Ltk Tracking ks Tracking Sk

Non-tracking and Concentrating
Solar Updraft Tower

Please see lecture video for example images of each type of solar technology.

50 kW Solar Chimney in Manzanares, Spain
Buonassisi (MIT) 2011



Solar Energy Conversion Technology

. . Solar to Heat
Solar to Electricity Electricity Solar to Heat Solar to Fuels

Non- : Non- , Non- . Non- .
Tracking """ \"€  Tracking Tracking O™ Tracking  |ocK"8

Tracking and Concentrating

a. Reflectors (Parabolic Troughs)

Please see lecture video for example images of each type of solar technology.

Buonassisi (MIT) 2011



Solar Energy Conversion Technology

. . Solar to Heat
Solar to Electricity Electricity Solar to Heat Solar to Fuels

Non- : Non- : Non- . Non- :
Tracking Tracking Tracking Tracking Tracking Tracking Tracking

Tracking and Concentrating
b. Parabolic Dish / Sterling Engines

Please see lecture video for example images of each type of solar technology.

http://www.stirlingenergy.com/technology/suncatcher.asp
Buonassisi (MIT) 2011
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Solar Energy Conversion Technology

. . Solar to Heat
Solar to Electricity Electricity Solar to Heat Solar to Fuels

Non- : Non- : Non- . Non- .
Tracking Tracking Tracking Tracking Tracking Tracking URELE

Tracking and Concentrating

c. Solar Towers (a.k.a. “Power Towers”)

Please see lecture video for example images of each type of solar technology.

PS10, 11 MW Solar Tower (Sanlucar la Mayor, Seville)
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Solar Energy Conversion Technology

Solar to Heat

Solar to Electricity Electricity

Current embodiments

Use heat to...

1. Heat water.

2. Desalinate water.
3. Cook food.

Solar to Heat

Solar to Fuels

Buonassisi (MIT) 2011



Solar Energy Conversion Technology

. . Solar to Heat
Solar to Electricity Electricity Solar to Heat Solar to Fuels

Non- . Non- . Non- : Non- :
el Tracking el Tracking Tracking el Tracking

1. Non-tracking and Non-concentrating

Solar Hot Water Heaters

Please see lecture video for example images of each type of solar technology.
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Solar Energy Conversion Technology

. . Solar to Heat
Solar to Electricity Electricity Solar to Heat Solar to Fuels

Non- . Non- : Non- : Non- :
el Tracking T Tracking Tracking T Tracking

2. Non-tracking and Concentrating
Solar Hot Water Tubes

Please see lecture video for example images of each type of solar technology.
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Solar Energy Conversion Technology

. . Solar to Heat
Solar to Electricity Electricity Solar to Heat Solar to Fuels

Non- Non- Non- Non-
: : : | i
Tracking Tracking Tracking Tracking Tracking Tracking Tracking Tracking

Tracking Solar to Heat

Solar Oven

Please see lecture video for example images of each type of solar technology.
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Solar Energy Conversion Technology

. . Solar to Heat
Solar to Electricity Electricity Solar to Heat

Solar to Fuels

Current embodiments

Enthalpy

1. Solar catalysis: Use sunlight to split (stable) molecules into more volatile species
(e.g.: 2H,0 + Energy = 2H, + O,).

2. Photosynthesis: Use sunlight to combine (stable) molecules into long-chain
hydrocarbons (e.g.: 6CO, + 6H,0 + Energy > C,H,,0, + 60,).

Entropy
1. Separation of phases: E.g., desalination.
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Solar Energy Conversion Technology

Solar to Heat

. . Solar to Heat
Electricity

Solar to Electricity

Solar to Fuels

Example of a Renewable Solar Fuels Cycle

3. Intermediate
4 Compound(s)

(Solar Fuels)
@ 2. Sunlight 4. Energy Extraction
c
Ll
1. Starting 5. Final
Compound(s) Compound(s)

)
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Solar Energy Conversion Technology

. . Solar to Heat
Solar to Electricity Electricity Solar to Heat

Solar to Fuels

Example of a Renewable Solar Fuels Cycle

photoresist ITO
fronT(?ct?nltact 4 CoPi catalyst
\
A
ey 2H,0
e h["’ + 4n*
Sunlight > e
O,
+4H"
|
/ Yoo\
nsi P pisi
(optional)
aqueous electrolyte

51

Courtesy of National Academy of Sciences, U.S.A. Used with permission. Source:
Pijpers, J., et al. "Light-Induced Water Oxidation at Silicon Electrodes Functionalized
with a Cobalt Oxygen-Evolving Catalyst." PNAS 108, no. 25 (2011): 10056-61. Buonassisi (MIT) 2011



Solar Energy Conversion Technology

.. Solar to Heat
Solar to Electricity Electricity Solar to Heat

Solar to Fuels

Reducing Entropy

Solar Desalination

Please see lecture video for example images of each type of solar technology.

Footnote: Some discussion occurred on 6/30 as to whether this should fall under “solar to
fuels”, or “solar to heat”.
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Balance of Systems
(Infrastructure Beyond Conversion Devices)

Energy Production Centralized Energy Production Distributed
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Energy Production Centralized | Energy Production Distributed

Solar

Power
Generation

Today’s typical centralized installation typically exceeds 500 kW,,.
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Energy Production Centralized | Energy Production Distributed

Please see lecture video for example images of each type of solar technology.
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Energy Production Distributed

Energy Production Centralized

Today’s typical distributed installation is typically less than 10 kW, but
can 675 kW, or larger.
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Energy Production Centralized

Energy Production Distributed

Please see lecture video for example images of each type of solar technology.
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Energy Production Centralized

Energy Production Distributed

Please see lecture video for example images of each type of solar technology.

Zero energy homes, Rancho Cordova, CA
|http://www.smud.org/news/multimedia.html Buonassisi (MIT) 2011
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Energy Production Centralized

Energy Production Distributed

Solar Panels

Inverter

Existing Circuit Utility meter
Breaker Panel

© source unknown. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.
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What about energy storage?

Energy storage, current embodiments

1. Chemical: Batteries (Pb, NiMH, Li), redox flow, fuels...

2. Electromagnetic: Capacitors, supercapacitors, SMES...

3. Mechanical: Fly-wheels, pneumatic, elastic, graviational...
4. Thermal: Storage tanks...

Buonassisi (MIT) 2011



Energy Production Centralized Energy Production Distributed

Storage Storage Storage Storage
Distributed Centralized Distributed Centralized

Please see lecture video for example images of each type of technology.

Fuel cells (x2)

Batteries (lead acid)
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Energy Production Centralized Energy Production Distributed

Storage Storage Storage Storage
Distributed Centralized Distributed Centralized

Please see lecture video for example images of each type of technology.

“Utility-scale” energy storage The Grid*
*non-dispatchable storage solution!
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Energy Production Energy Production

Distributed

Centralized

Storage
Centralized

Storage Storage
Distributed

Centralized

Storage
Distributed

Solar Energy Conversion Technology

Solar to Solar to Heat
. . . . Solar to Heat Solar to Fuels
Electricity Electricity
Non-
Non- . Non- . Non- . . .
e Tracking e Tracking o Tracking Tra;km Tracking
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CO,, Energy, and Climate Change



Greenhouse Gasses and Mean Global Temperature
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© AAAS. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/fairuse.
Source: Brook, E."Tiny Bubbles Tell All." Science 310 (2005): 1285-7.

See also:
J.R. Petit, J. Jouzel, D. Raynaud, et al., Nature 399, 429 (1999)
U. Siegenthaler, T.F. Stocker, E. Monnin, et al., Science 310, 1313 (2005)

Renato Spahni, J. Chappellaz, T.F. Stocker, et al., Science 310, 1317 (2005) 65
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Greenhouse Gasses and Mean Global Temperature
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© AAAS. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see http://ocw.mit.edu/fairuse.

Source: Brook, E. "Tiny Bubbles Tell All." Science 310 (2005): 1285-7.

See also:

J.R. Petit, J. Jouzel, D. Raynaud, et al., Nature 399, 429 (1999)

U. Siegenthaler, T.F. Stocker, E. Monnin, et al., Science 310, 1313 (2005)
Renato Spahni, J. Chappellaz, T.F. Stocker, et al., Science 310, 1317 (2005)

For over 600,000 years, a strong
correlation between greenhouse
gasses and global temperature exists.

For the last 12,000 years, global
temperatures have been stable,

coincident with the rise of human
civilizations.
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Greenhouse Gasses and Mean Global Temperature
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© AAAS. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.
Source: Brook, E. "Tiny Bubbles Tell All." Science 310 (2005): 1285-7.

See also:

J.R. Petit, J. Jouzel, D. Raynaud, et al., Nature 399, 429 (1999)
U. Siegenthaler, T.F. Stocker, E. Monnin, et al., Science 310, 1313 (2005)
Renato Spahni, J. Chappellaz, T.F. Stocker, et al., Science 310, 1317 (2005)

For over 600,000 years, a strong
correlation between greenhouse
gasses and global temperature exists.

For the last 12,000 years, global
temperatures have been stable,
coincident with the rise of human
civilizations.

Recently, greenhouse gas levels have
greatly exceeded naturally-occurring
watermark — in some cases, by >2x.

What recently disrupted this
natural cycle?
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Greenhouse Gasses, Mean Global Temperature, and Humans
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See also:

D.M. Etheridge et al., J. Geophys. Res. 101, 4115 (1996). 55
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Energy and Greenhouse Gasses

Please see lecture video for relevant interaction with graph.

« >85% global energy from fossil fuels

« Energy, GDP, and CO, are strongly correlated.

» Global energy needs are predicted to steadily increase.
« Business as usual: CO, levels will continue to increase.
« >20% increase in atmospheric CO, content!

69
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The Magnitude of Global Warming

Anthropogenic and natural forcing of the climate for the year 2000, relative to 1750

Global mean radiative forcing (Wm-2)
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Climate Change 2001: Synthesis Report. A Contribution of Working Groups I, II and III to the Third
Assessment Report of the Intergovernmental Panel on Climate Change, Figure 2-2; Figure SPM-2;
Figure SPM-10b; Figure SPM-10a; Figure SPM-6. Cambridge University Press.

Buonassisi (MIT) 2011

70



Scientific Consensus re: Global Warming

“Consensus as strong as the one that has developed around this topic is rare in science.”
D. Kennedy, Science 291, 2515 (2001)

“‘Human activities ... are modifying the concentration of atmospheric constituents ... that absorb or scatter radiant
energy. ... [M]ost of the observed warming over the last 50 years is likely to have been due to the increase in
greenhouse gas concentrations” p.21

(a.k.a. 2001 IPCC Report) J. J. McCarthy et al., Eds., Climate Change 2001: Impacts, Adaptation, and
Vulnerability (Cambridge Univ. Press, Cambridge, 2001)

“Greenhouse gases are accumulating in Earth’s atmosphere as a result of human activities, causing surface air
temperatures and subsurface ocean temperatures to rise.” p.1

(a.k.a. 2001 NAS Report) National Academy of Sciences Committee on the Science of Climate Change, Climate
Change Science: An Analysis of Some Key Questions (National Academy Press,Washington, DC, 2001).

928 [peer-reviewed] papers were divided into six categories: explicit endorsement of the consensus position,
evaluation of impacts, mitigation proposals, methods, paleoclimate analysis, and rejection of the consensus
position. Of all the papers, 75% fell into the first three categories, either explicitly or implicitly accepting the
consensus view; 25% dealt with methods or paleoclimate, taking no position on current anthropogenic climate
change. Remarkably, none of the papers disagreed with the consensus position... [or argued] that current climate
change is natural.

N. Oreskes, Science 304, 1686 (2004).

“One of the reasons scientists consider the evidence so compelling is that it draws on such a broad range of
sources. In addition to climate specialists who use sophisticated computer models to study climatic trends,
researchers from an array of disciplines, including atmospheric scientists, paleoclimatologists, oceanographers,
meteorologists, geologists, chemists, biologists, physicists, and ecologists have all corroborated global warming
by studying everything from animal migration to the melting of glaciers. Evidence of a dramatic global warming
trend has been found in ice cores pulled from the both polar regions, satellite imagery of the shrinking polar ice
masses, tree rings, ocean temperature monitoring...” p.29

Union of Concerned Scientists. ExxonMobil Report: Smoke Mirrors & Hot Air (PDF). 2007. Buonassisi (MlT) 2011
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Anthropogenic Forcing

Comparison between modeled and observations of temperature rise

since the year 1860
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Climate Change 2001: Synthesis Report. A Contribution of Working Groups I, II and III to the Third 72

Assessment Report of the Intergovernmental Panel on Climate Change, Figure 2-2; Figure SPM-2;
Figure SPM-10b; Figure SPM-10a; Figure SPM-6. Cambridge University Press.
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Variations of the Earth’s surface temperature: year 1000 to year 2100

Future Predictions

Departures in temperature in °C (from the 1990 value)
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Current trends predicted to continue.
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The Renewable Energy Imperative

Emissions, concentrations, and temperature changes corresponding
to different stabilization levels for CO, concentrations
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Recap

Why Solar?

1.
2.
3.

4.

Energy is a necessary ingredient for human development.

The solar resource is abundant.

The solar resource distribution is well matched to growing human
energy demand.

Solar is renewable, and is a 5-10x lower-carbon energy source than
fossil fuels. [1]

How Solar?

1.

2.
3.

4.

Solar is on a rapid path to convergence with conventional fossil-fuel-
based energy sources, both in cost and scale.

Many challenges inhibiting wide-scale solar adoption are identified.
Solutions to these challenges are rooted in PV technology,
manufacturing, and deployment innovations.

To train future leaders to develop these solutions, a solid fundamental
understanding of the science, technology, and cross-cutting themes is
necessary.

[1] V.M. Fthenakis et al., Environmental Science & Technology 42, 2168 (2008)
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2.626/2.627: Fundamentals

Every photovoltaic device must obey:

Output Energy
Input Energy

Conversion Efficiency (7) =

For most solar cells, this breaks down into:
Inputs Outputs

Charge
Solar Spectruwﬁ Collection >

77total — nexcitation X ndriﬂ/diffusion X nseparation X ncollection
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