
Electrical OverviewRef: Woud 2.3 N.B. this is a long note and 
repeats much of what is is the textQ Q = charge C = 1 C  C = 1 coul I = 

t (2.50) 
t = time min = 60 s s = 1 s  

I = current A = 1 A  

work done per unit charge = potential difference two points U = volts V 

A 1 W 1V 1⋅=

= 1 V  
aka electromotive force (EMF) 

1V 1

source, resistance, inductance, capacitance 

resistance 

⋅Power U t( )  I t( )⋅ A 1 watt = = (2.51) 

friction in mechanical systemresistance = R =Ω 1 Ω ohm = 1 Ω 

Ohm's law (2.52)U t( )  I t( ) R⋅= 

2 2power in a resistor ... (2.53)Power U t( ) I t( )  I t( )⋅ ⋅R 1Ω (1A) = 1 W= = ⋅
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1 2Id I (2.56)inductive_energy_stored Eind P t( ) d d dI dI ⋅Lt t= = = = ⋅→
2dt 

2A ⋅H 1 J= 
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(2.57)I t( )  C  

⋅⋅ 

1 A  or ... U t( )  

C U

d 1 Vt= = = =
C Fs 

U t( )  1 W= = 
dt s 

t U Ut 
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capacitive_energy_stored Ecap P t( ) d U t( )  d dU dU ⋅Ct t= = = = ⋅→
2dt 

2V ⋅F 1 J= 



Kirchhoff's laws 
first ... number_of_currents 

sum_of_currents_towards_node = 0 ∑ ⎡⎣Ii( )t ⎦⎤ = 0 (2.60) 

second ... i = 1 

sum_of_voltages_around_closed_path = 0 direction specified 

number_of_voltages 

∑ ⎡⎣Ui( )t ⎤⎦ = 0 (2.61) 

i = 1 
series connection of resistance and inductance ... 

imposed ... external U t( )  := UmUm⋅cos(ω⋅t) Um = amplitude_of_voltage V = 1 V (2.62) 

1
ω = frequency Hz = 1 

s 
t = time min = 60 s 

resulting current assumed also harmonic I t( )  := ImIm⋅cos(ω⋅t − φ) Im = amplitude_of_current A = 1 amp (2.63) 

φ = phase_lag_angle 

it is useful to represent this parameters as vectors using complex notation, where the values are represented by the real 
parts 

Uz t( )  := UmUm⋅cos(ω⋅t) + Um ⋅sin(ω⋅t)⋅i Iz t( )  := ImIm⋅cos(ω⋅t − φ) + Im ⋅cos(ω⋅t − φ)⋅i 
plotting set up 
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Real parts of Uz(t), Iz(t) = U(t), I(t) 

over R voltage drop will be ... UR( )tt := ⋅ ( )  → ⋅ ⋅ ⎡(−ω)⋅t ⎤ ( )  = ⋅ ⋅ ( ) ( )  (−α)R I t R Im cos⎣ + φ⎦ UR t R Im cos ω⋅t − φ cos α = cos

over L voltage drop will be ... UL( )tt := L⋅ d I t( )  → L I⋅ m ⋅sin⎡⎣(−ω)⋅t + φ⎦⎤⋅ω

dt


L⋅ d I t( )  = −Im ⋅ω⋅L⋅sin(ω⋅t − φ) = Im ⋅ω⋅L⋅cos⎜⎛
π 
+ ω⋅t − φ⎟⎞ 

dt ⎝ 2 ⎠ 
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⎛ π ⎞ → − ( ) 	 ⎛ π ⎞ ⎛ π ⎞ ( )  ⎛ π ⎞ ( )  ( )  ( )cos + α sin α cos + α = cos ⋅cos α − sin ⋅sin α = 0 cos α − ⋅ 
⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ 
⎜ ⎟	 or ... ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⋅ 1 sin α

in complex (vector) notation ... UzR( )t := R II⋅ mm⋅cos(ω⋅t − φ) + R I⋅ m ⋅sin(ω⋅t − φ)⋅i 

⎛ π ⎞ ⎛ π ⎞UzL( )t := ImIm⋅ω⋅L⋅cos	⎜ + ω⋅t − φ⎟ + Im ⋅ω⋅L⋅sin⎜ + ω⋅t − φ⎟⋅i 
⎝ 2 ⎠ ⎝ 2 ⎠ 

plotting set up 

0.2 0	 0.2 0.4 0.6 0.8 1 

Real parts of Uz(t), UzR(t), UzL(t) = U(t), UR(t), UL(t) 

at this point these vectors are shown with two unknowns included Im and φ 

i.e. directions are correct relatively given φ and magnitudes arbitrary given Im 

( )  UR t UL( )t	 → ⋅ ⎡⎣ − t + φ⎤⎦ ⋅ sin⎡⎣ − t + φ⎤⎦⋅Kirchoff's second law ... U tt := ( )  + R Im ⋅cos ( )ω ⋅ + L Im ⋅ ( )ω ⋅ ω 

( ) ( ) ⎛ π ⎞Um ⋅cos ω⋅t = R I⋅ m ⋅cos ω⋅t − φ + L I⋅ m ⋅ω⋅cos	⎜ + ω⋅t − φ⎟ 
⎝ 2 ⎠ 

this can be solved for φ and Im after expanding the rhs into sines and cosines and setting cos = cos and sin = sin 
easier if think in terms of vectors 
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Real parts of Uz(t), UzR(t), UzL(t) = U(t), UR(t), UL(t) 

for UzR(t) + zL(t) to = Uz(t) magnitude and angle must be = Uz t( )  → ⋅ ( ) + ⋅ ⋅sin(ω⋅t)Um cos ω⋅t i Um 

R + (L⋅ω)2 
⋅Im 

UzR( )t → ⋅ ⋅ ⎡⎣(−ω + φ⎤⎦ − ⋅ ⋅ ⋅sin⎡⎣ )⋅t + φ2	 R  Im cos )⋅t i R Im (−ω= (R I⋅ m)2 
+ (L I⋅ m ⋅ω)2 =Um 

UzL( )t → ⋅ ⋅sin⎡⎣	 )⋅t + φ⎤⎦⋅ω + ⋅ ⋅ ⋅ ⋅ ⎡⎣(−ω)⋅t + φ⎦⎤L  Im (−ω i Im ω L cos 

Um or ... Im = 
R2 

+ (L⋅ω)2 

⎛ L⋅ω ⎞and ... φ = atan	⎜ ⎟

⎝ R ⎠


using these relationships in the plot ... 

plotting set up 
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Real parts of Uz(t), UzR(t), UzL(t) etc. = U(t), UR(t), UL(t), etc. 

N.B. angle may not appear as right angle due to scales 
φ shown as lag (positive value with negative sign) 
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capacitor lead approach (text) 

similar for Capacitance 

imposed ... external U t( )  := UmUm⋅cos(ω⋅t) Um = amplitude_of_voltage V = 1 V (2.62) 

1
ω = frequency Hz = 1 min = 60 s 

s 
t = time 

this is different from text: lag phase angle vs. lead angle used 

resulting current assumed also harmonic I t( )  := ImIm⋅cos(ω⋅t − φ) Im = amplitude_of_current V = 1 V 

current assumed to have lag angle. this approach taken 
to allow common treatment of L and C in circuits φ = phase_lag_angle 

complex (vector) representation, set up with real part expressed as cos 

Uz t( )  = Um ⋅cos(ω⋅t) + Um ⋅sin(ω⋅t)⋅i Iz t( )  = Im ⋅cos(ω⋅t − φ) + Im ⋅sin(ω⋅t − φ)⋅i 

plotting set up 
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voltage and current at omega*t positive lag phase angle 

0 

0.5 

1 Uz(t) 
Iz(t)

Im
ag

in
ar

y 
pa

rts
 o

f U
z(

t),
 Iz

(t)
 

0	 0.2 0.4 0.6 0.8 1


Real parts of Uz(t), Iz(t) = U(t), I(t)


voltage across capacitor (from above) 

(2.57)	
UC( )t = 

⌠
⎮ 

t 
I t( )

dt = 
⌠
⎮ 

t 
Im ⋅cos(ω⋅t − φ) 

dt = 
Im ⋅sin(ω⋅t − φ) 

= 
Im 

⋅cos ⎛⎜ω⋅t − φ − 
π ⎞⎟ 

⎮ C ⎮ C	 C⋅ω C⋅ω ⎝ 2 ⎠⌡ ⌡0 0 

using complex (vector) notation 

Uz t( )  := UmUm⋅cos(ω⋅t) + Um ⋅sin(ω⋅t)⋅i	 Iz t( )  := ImIm⋅cos(ω⋅t − φ) + Im ⋅cos(ω⋅t − φ)⋅i 

ImIm ⎛ π ⎞ Im ⎛ π ⎞UzC( )t := ⋅cos⎜ω⋅t − φ − ⎟ + ⋅sin⎜ω⋅t − φ − ⎟⋅i 
C⋅ω ⎝ 2 ⎠ C⋅ω ⎝ 2 ⎠ 

UzR( )t := R II⋅ mm⋅cos(ω⋅t − φ) + R I⋅ m ⋅sin(ω⋅t − φ)⋅i 

Kirchoff's second law for resistor with capacitor... 

Uz tt( )  := UzR( )t + UzC( )t → Ω⋅Im ⋅cos⎡⎣(−ω)⋅t + φ⎤⎦ − i⋅Ω⋅Im ⋅sin⎡⎣(−ω)⋅t + φ⎦⎤ −	
Im 

⋅sin⎡⎣(−ω)⋅t + φ⎦⎤ − i⋅ 
Im 

⋅cos⎡⎣(−ω)⋅t + φ⎤⎦
C⋅ω C⋅ω 

plotting set up 
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Voltages with phase angle = - 40 deg 
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N.B. angle is distorted due 
to scales; angle between 
UzR(t) and UzC(t) is π/2) 

Real parts of Uz(t), UzR(t), UzC(t) etc. = U(t), UR(t), UC(t), etc. 

I I
Uz t( )  = ⋅ ( ) + ⋅sin(ω⋅t) = R Im ⋅cos(ω⋅t − φ) + i R I⋅ m sin(ω⋅t − φ) + 

m 
⋅sin(ω⋅t − φ) − i⋅ 

m 
⋅cos(ω⋅t − φ)Um cos ω⋅t Um ⋅ ⋅ ⋅


C⋅ω C⋅ω


look at solution plotted 

plotting set up 
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Real parts of Uz(t), UzR(t), UzC(t) etc. = U(t), UR(t), UC(t), etc. 

I I
Uz t( )  = ⋅ ( ) + ⋅sin(ω⋅t) = R Im ⋅cos(ω⋅t − φ) + i R I⋅ m sin(ω⋅t − φ) + 

m 
⋅sin(ω⋅t + φ) − i⋅ 

m 
⋅cos(ω⋅t + φ)Um cos ω⋅t Um ⋅ ⋅ ⋅ 

C⋅ω C⋅ω 

magnitude similar to	
U phase angle is negative;above ...	 m

Im = hence referred to as	 ⎛ 1 ⎞ 
2 1 lead angle φ = −atan⎜ ⎟ 

R + ⎝ ω⋅C⋅R ⎠ 
(ω⋅C)2 
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N.B. angle may not appear as right angle due to scales 
φ shown as lead (negative value with negative sign) φ1 = −26.565 deg in this numerical example 

⎛ ω⋅L 1 ⎞so with both L and C φ = atan	⎜ − ⎟ 
⎝ R ω⋅C⋅R ⎠ 
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Section 2.3.4 

Direct current (DC) P = U⋅ = I2 
⋅R 

Single phase alternating current (AC) P t( )  = U t( )  I t⋅ ( )  

typically sinusoidal ... U t( )  := UmUm⋅cos(ω⋅t) I t( )  := ImIm⋅cos(ω⋅t − φ) lag phase angle used 

⎛ 1 ⌠
T ⎞ 1 average power ... PaPa := lim ⋅⎮ U t( )  I t⋅ ( ) dt → ⋅Um ⋅Im ⋅cos φ


T → ∞ ⎝
⎜
⎜ 

T ⌡0 ⎠
⎟
⎟ 

2 
( ) 


in practice effective values are used 

1
1 

UeUe := lim 
1 
⋅
⌠⎮ 

T 

(Um ⋅cos(ω⋅t))2 
dt → 

1 
⋅2 2 

⋅⎛Um
2⎞ 

2 
Ue := 

UUmm
Ue = effective_voltage

T ⌡⎮ 2 ⎝ ⎠ 2T → ∞ 0

1


IeIe := lim 
1 
⋅
⌠⎮ 

T 

Im ⋅cos(ω⋅t − φ) 2 
dt → 

1 
⋅2 

1

2 
⋅⎛ 2⎞ 

2 
:= 

ImIm
Ie = effective_current

T ⌡⎮
( ) 2 ⎝Im ⎠ Ie 2T → ∞ 0 

( )so average power becomes ... ( )  cos φ = power_factorPa := UeUe⋅Ie ⋅cos φ

what is current required in two systems with same effective voltage but larger phase lag? 

here forward e subscript dropped and U == Ue, I == Ie 

some power and current definitions 

apparent_power = V A = ⋅ I = current A = 1 amp⋅ U I

real_power = U ⋅cos φ W = 1 W load_current = ⋅ ( )⋅ ( )  same for current I cos φ A = 1 amp 

reactive_power = U I sin φ ⋅ reactive_current = I sin φ A = 1 amp⋅ ⋅ ( )  V A ⋅ ( )  

three phase alternating current 

⎛ 0 ⎞ 
⎜ ⎟ i := 1 .. 3 
⎜2⋅

π ⎟ 
α := ⎜ 3 ⎟ phase angle for respective phases Upi 

:= UmUm⋅cos(ω⋅t − αi) 
⎜ ⎟ 
⎜ 4⋅

π
⎟ 

and ... 
:= ImIm⋅cos(ω⋅t − αi − φ)

⎝ 3 ⎠ 
Ipi 

3 3 

∑ Upi 
expand → 0 ∑ Ipi 

expand → 0 

i = 1 i = 1 

ORIGIN 1:= 
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⋅ ⋅ 

⋅ ⋅ 

star connection ... IL1 
= Ip1 

IL2 
= Ip2 

IL3 
= Ip3


i := 1 .. 2
 ULi 
:= UpUpi 

− Upi 1
UL3 

:= UpUp3 
− Up31
+


i := 1 .. 3 Uzpi 
:= UmUm⋅cos(ω⋅t − αi) + Um ⋅sin(ω⋅t − αi)⋅i


i := 1 .. 2
 UzLi 
:= UzpUzpi 

− Uzpi 1
UzL3 

:= UzpUzp3 
− Uzp1+ 

i := 1 .. 3 e.g. UzL1 
simplify → ⋅ ( ) + ⋅ ⋅sin(ω⋅t) + ⋅ ⎛ω⋅t + 

1 
⋅π⎞ + ⋅ ⋅sin⎛ω⋅t + 

1 
⋅π⎞Um cos ω⋅t i Um Um cos i Um⎜ ⎟ ⎜ ⎟ 

⎝ 3 ⎠ ⎝ 3 ⎠magnitude is ... from trigonometry... 
1 

U * ⎛ ⎛ π ⎞⎞ ⎛ ⎛ π ⎞⎞ )2m ⎜cos(ω⋅t) + cos⎜ω⋅t + ⎟⎟ 
2 
+ ⎜sin(ω⋅t) + sin⎜ω⋅t + ⎟⎟ 

2 
expand → (3 cos(ω⋅t + 3 sin(ω⋅t 

⎝ ⎝ 3 ⎠⎠ ⎝ ⎝ 3 ⎠⎠ 
magnitude := UmUm⋅ 3 

angle relative to ω*t (set ω*t = 0) 

simplify ⎛ 1 ⎞ ⎛ 1 ⎞UzL1 
Um ⋅cos 0 + ⋅ m ⋅sin 0 + Um ⋅cos ⋅π + ⋅ m ⋅sin ⋅π→ ( ) i U ( )  i U⎜ ⎟ ⎜ ⎟ substitute t, = 0 ⎝ 3 ⎠ ⎝ 3 ⎠ 

⎛ sin⎜⎛
π
⎟⎞ ⎞ ⎛ sin⎜⎛ 

π
⎟⎞ ⎜ ⎝ 3 ⎠ ⎟ ⎜ ⎝ 3 ⎠ = 

)2) 2 

(2.85) 

⎞

⎟


angleωt atan⎜ 
⎜ 1 

for plotting ... i := 1 .. 3 ω1 := 1 t1 := 0.79 ⎝ 

φ1 := 1 mU1 := 1 U1pi 
:= U1m cos(ω1 t1 − αi) U1zpi 

:= 

2 

1.5 

1 

0.5 

0 

0.5 

1 
1 0.5 0 0.5 

Up1 
Up2 
Up3 
-Up2 ref Up1 
Up1-Up2 

⎟ atan⎜ ⎟ = 30 deg 
+ cos⎜⎛

π
⎟⎞ ⎟ ⎜ 1 + cos⎜⎛ 

π
⎟⎞ ⎟ 

⎝ 3 ⎠ ⎠ ⎝ ⎝ 3 ⎠ ⎠ 

U1m cos ω1 t1 − αi) + U1m ⋅ ( ⋅ αi⋅ ( ⋅ sin ω1 t1 − )⋅i 

1 

similarly in a delta connection ... current has same geometry UL Up = (2.86) IL Ip ⋅= 3 (2.87) 
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⋅ ⋅ 

2.3.5 Magnetic induction 

B = μ⋅ 
I

B = flux_density T = 1 tesla T = 1
Wb 

T = 1 
kg 

2⋅π⋅r 2 2 
(2.90)	 m amp s ⋅ 

⋅	 henry
μ = permeability_of_medium	

H 
= 1 

m kg H 
= 1 

m 2 2 m mA ⋅s 

I 

r	
B 

7 H
μ = μ 0⋅μ R μ 0 = permeability_of_vacuum 0μ := 4⋅π⋅10

m 

μ R = permeability_of_medium_relative_to_vacuum unitless magnetic field around wire carrying current
derived from Biot-Savart law 

e.g. magnetic field at point P results from motion of charged particle at velocity V in vacuum 

→ → parameters	 units and equivalents
μ 0 V × ar 4 1


B = ⋅q⋅ T B = flux_density T = 1 tesla T = 1 × 10 gauss T = 1 Wb

4⋅π 2 2
r	 m 

− 7 H H N H newton
μ 0 = permeability_in_vacuum 0μ := 4⋅π⋅10 = 1 = 1 

m m 2 m 2A amp 
q = charge C = 1 coul C = 1 A s⋅ 

→ m

V = velocity_vector_of_charge s


→	 units check 
ar = unit_vector_from_charge_q_to_point_P 

H m 1 
⋅C⋅ ⋅ = 1 T  r = distance_from_P_to_charge m m s 2 m 

→ →

differential μ 0 V × ar

form dB = ⋅dq⋅


4⋅π 2
r 
→ → 

line currents ... q V  = I dl  
→ → ⌠

μ 0 dl × ar ⎮ μ 0 I → → 
so .. dB = ⋅I⋅ B = ⎮ ⋅ dl × ar4⋅π r2 ⎮ 4⋅π r2 

⌡ 
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dαθ 

αθ 

r*dα 

r 

R 

I 

dldl 

θ 

dB into 
paper 

R 

r 

e.g. long straight wire with current I 

→ →

μ0 dl × ar dl sin⋅ θ
μ0 ( )

dB = ⋅I⋅ = ⋅I⋅ 
4⋅π 2 4⋅π 2 r r 

see figure at right 

dl sin θ = r dα⋅ ( )  ⋅ 

r⋅ 
dα

⋅ ( )  
⋅ ( )  ( ) sin θ

dαdl sin θ sin θ geometry for solution set up= = 
⋅ r2 r2 r ( )  r dα ( )  R

dα sin θ = cos α = 
dl r 

R ( ) dα →

cos( )α = μ0 dl × ar μ0 ( )  μ0 ( ) dα


r = dα cos α ⋅ → 

r R dl sin⋅ θ cos α ⋅ 
dB = ⋅I⋅ = ⋅I⋅ = ⋅I⋅ 

4⋅π 2 4⋅π 2 4⋅π R r r 

π π 

( )  μ0 ( )  I⌠ 
⌠
⎮

2 μ0 cos α
⌠
⎮

2 
cos α 1 μ0 μ0⋅I 

B = ⎮ 1 dB = ⎮ ⋅I⋅ dα ⎮ ⋅I⋅ dα → ⋅ ⋅ B = Q.E.D. 
⌡ ⎮ 4⋅π R 

⎮ 4⋅π R 2 π Ω 2⋅π⋅R 
⌡− π ⌡− π 

2 2 

if area not vacuum, substitute μ =μr*μ0 ... 

magnetic flux density over an area AA 

⌠ ⋅ 
2 

Φ := ⎮ BB dAA AA = enclosed_area to distinguish from A Wb = 1 weber Wb = 1
kg m

A = 1 amp
⌡ (ampere) A s2 

⋅ 
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⋅ ⋅ 

Lorentz force 

a force will act on a current carrying conductor when it 
is placed in a magnetic field 

FL 

FL = B I⋅ ⋅len FL = Lorentz_force N = 1 newton 

(2.92)	 B = flux_density T = 1 tesla


I = current_thru_conductor A = 1 amp


len = length m


I 

l=len 

B into paper 
T A m = 1 N  

⎯→
FL I len × B where x is vector cross product and magnitude is B I⋅ ( right hand rule applies= ⋅ ⋅ sin angle)


view of single coil in magnetic field (B) with current (I) (slightly revised from text; len*sin(β)


I 

h 
F into
 paper 

len*sin(β) 

h
F 

B 

I into paper 

lenF 

F 
β 

side view	 top view 

⋅ force on one segment (h) of coil F = I × B⋅h N.B. I is perpendicular to B => F = I B⋅h 

torque on coil depends on β ⋅ len sin β = distance_between_couple_of_force_F( )  ( )M = F len⋅sin β ⋅ 

M = F len⋅sin β = I B⋅h⋅len⋅sin β = I B⋅AA⋅sin β = ⋅ ⋅sin β AA = area_of_coil = enclosed_area⋅ ( ) ⋅ ( ) ⋅ ( )  I Φ ( ) 	 AA to distinguish 
from A (ampere) 

account for multiple windings (turns) (N) M = N I⋅ ⋅ ( )⋅ Φ sin β

general relationship recognizing proportionality to I*Φ M = Km ⋅Φ⋅I Km = constant_for_given_motor (2.93) 

13 
11/13/2006 




Faraday's Law 
Voltage is generated in conductor when moving in magnetic field 

E = −B⋅len⋅v 

E = induction_potential = electromotive_force V = 1 volt units check

B = flux_density T = 1 tesla


m 
v = velocity 

m T⋅ 
s 
⋅m = 1 V  

s 
len = length_of_conductor m 

B into paper 

E v 

E as shown is positive value and direction 
minus sign is consistent with observation that E as shown 
would produce a current in the same direction which in 
turn would produce a force opposite to velocity.

l=len 

vector form ... E = −(B × v)⋅len 

consistent with text ... multiply by sin(α) where α is 
angle between B and v 

E = −d Φ for single turn and .. E = −Nd Φ Wbmay also be expressed as ... dt for N turns dt = 1 V  (2.95) 
s 

since ... Φ = ⋅ E = −d Φ = −d (B Area = − d Area = − ⋅len d x Area = ⋅B Area ⋅ ) B B len x
dt dt dt dt as ... 

in coil rotating in constant magnetic field B ⋅ ⋅ ( )  B Area ( )  where ...Φ = B Area cos β = ⋅ ⋅cos ω⋅t 

Area = area_enclosed_in_coil 
and with N turns ... d ( ( )  ) ( ) ωE = −N ⋅ ⋅cos ω⋅t → E = ⋅ ⋅ ⋅B Area N B Area sin ω⋅t ⋅ 

dt 
substituting ... ω = 2⋅π⋅n n = rpm rpm = 6.283 E = N 2⋅ ⋅n⋅B⋅ ⋅sin ω⋅t 

rad 
⋅ π Area ( )  

min 

as abve for motor constant ... express ... E = KE⋅Φ⋅n KE = constant_for_given_motor 

E = induced_electromotive_force V = 1 volt 

Φ = magnetic_flux Wb = 1 weber 

1 
n = rotation_speed rpm = 0.105 ⋅ rpm =1Wb 60 6.283 V 

sec 
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