
Second Law	 first draft 9/23/04, second Sept Oct 2005 
minor changes 2006, used spell check, 
expanded example 

Kelvin-Planck: It is impossible to construct a device that will operate in a cycle and produce no effect other than the 
raising of a weight and the exchange of heat with a single reservoir. 

Clausius: It is impossible to construct a device that operates in a cycle and produces no other effect than the 
transfer of heat from a cooler body to a hotter body. 

Woud: used to: 1) predict the direction of processes

2) establish the conditions of final equilibrium

3) determine best possible theoretical performance of a process


if it is impossible to have a heat engine with 100% efficiency, how high can it go?? 

define ideal process, termed reversible process: a process that, once having taken place, can be reversed 
without changing either the system or surroundings 

examples irreversible; piston expanding against stop

reversible; piston expanding by removing and replacing weights; excerpt from VW&S page 166 good

description of reversible and irreversible processes


Let us illustrate the significance of this definition for a gas 
contained in a cylinder that is fitted with a piston. Consider first 
Fig. 6.8, in which a gas (which we define as the system) at high 
pressure is restrained by a piston that is secured by a pin. When 
the pin is removed, the piston is raised and forced abruptly 
against the stops. Some work is done by the system, since the 
piston has been raised a certain amount. Suppose we wish to 
restore the system to its initial state. One way of doing this 
would be to exert a force on the piston, thus compressing the gas 
until the pin could again be inserted in the piston. Since the 
pressure on the face of the piston is greater on the return stroke 
than on the initial stroke, the work done on the gas in this reverse 
process is greater than the work done by the gas in the initial 
process. An amount of heat must be transferred from the gas 
during the reverse stroke in order that the system have the same 
internal energy it had originally. Thus the system is restored to 
its initial state, but the surroundings have changed by virtue of 
the fact that work was required to force the piston down and heat 
was transferred to the surroundings. Thus the initial process is an 
irreversible one because it could not be reversed without leaving a 
change in the surroundings. 
In Fig. 6.9 let the gas in the cylinder comprise the system and let 
the piston be loaded with a number of weights. Let the weights 
be slid off horizontally one at a time, allowing the gas to expand 
and do work in raising the weights that remain on the piston. As. 
the size of the weights is made smaller and their number is 
increased, we approach a process that can be reversed, for at each 
level of the piston during the reverse process there will be a small 
weight that is exactly at the level of the platform and thus can be 
placed on the platform without requiring work. In the limit, 
therefore, as the weights become very small, the reverse process 
can be accomplished in such a manner that both the system and 
surroundings are in exactly the same state they were initially. 
Such a process is a reversible process. 
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Carnot cycle 

example steam power plant - working substance steam 

boiler - heat transferred from high T (constant) reservoir to 
steam - steam T only infinitesimally lower than reservoir 
=> reversible isothermal heat transfer process. (phase 
change fluid - vapor is such a process 

turbine - reversible adiabatic (no heat transfer) T 
decreases from TH to TL 

condenser - heat rejected from working fluid to TL reservoir 
(infinitesimal ΔT) some steam condensed 

pump - temperature raised to TH adiabaticly 

can reverse and act as refrigerator 

Carnot cycle four basic processes:
 1. reversible isothermal process in which heat is transferred to or from the TH reservoir
 2. reversible adiabatic process in which the temperature of the working fluid decreases from T H to TL
 3. reversible isothermal process in which heat is transferred to or from the TL reservoir
 4. reversible adiabatic process in which the temperature of the working fluid increases from TL to TH 

Carnot cycle most efficient, and only function of temperature 

efficiency (in heat engine) 

W = energy_sought QH − QL QL

η thermal = 

QH = energy_that_costs 
= 

QH 
= 1 − 

QH


temperature scale (arbitrary but defined in terms of Carnot efficiency) 

f TH

η thermal = 1 − 

QL 
= ψ(TL , TH) 

QH 
= 

( ) 
= 

TH proposed by TL

QH QL ( TL Lord Kelvin η thermal = 1 − 

TH 
most efficientf TL) 

at this point have ratio of absolute temperatures

derive scale from non-Carnot heat engine operating at steam T H and ice temperature TL


if we could measure it would find η TH
to be 26.80% η th = 0.2680 = 1 −

TL


if want difference to be 100 as on the Celsius scale ΔT := 100


TH := 100 TL := 200

Given TL
initial values 0.2680 = 1 − TH = TL + ΔT


TH
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⎛⎜ 
⎜⎝


⎞⎟ 
⎟⎠

:= )


⎛⎜ 
⎜⎝


TH 

TL 

⎛
⎜
⎝


⎞⎟ 
⎟⎠


373.134 

273.134 
⎞
⎟
⎠


= 
TH 

Find TH TLTL 

T_deg_C + 273.134 = T_deg_K	 VW&S has 273.15 changed to 273.16 to 
correspond to triple point of water 0.01 deg_C 

,(

Entropy 
inequality of Clausius ... 

⌠
⎮ 
⎮
⌡ 

1 
dQ ≤ 0 

T 

for fig 7.1 

⌠
⎮
⌡ 

1 dQ QH − QL > 0= 

from definition of absolute temperature scale and T H and TL constant 

⌠
⎮ 
⎮
⌡ 

QH
− 

QL1 
Q = 0d = 

T TH TL 

⌠
⎮ 
⎮
⌡ 

1 
dQ = 0 

T 

⌠
⎮
⌡ 

if .. 1 dQ approaches 0, TH approaches TL, while reversible 

⌠
⎮ 
⎮
⌡ 

⌠
⎮
⌡ 

1 dQ ≥ 0 and ... 1 
dQ = 0 

T
=> for all reversible heat engines ... 

if irreversible, with TH, TL, and QH same ... Wirrev Wrev< 

for bothQH − QL = W QH − QL_irrev QH − QL_rev => QL_irrev QL_rev< > 

⌠
⎮
⌡ 

and ...1 dQ QH − QL_irrev > 0= 
⌠
⎮ 
⎮
⌡ 

QH
−

QL_irrev1 
dQ < 0= 

T TH TL 

if heat engine becomes more irreversible such that W => 0.. 

as ... 
⌠
⎮
⌡ 

1 dQ = 0 
⌠
⎮ 
⎮
⌡ 

1 
T 

dQ < 0 => all irreversible engines 
⌠
⎮ 
⎮
⌡ 

⌠
⎮
⌡ 

1
1 dQ ≥ 0 dQ < 0 

T 

should do refrigeration cycle as well 
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example figure 7.3 pg 188 VW&S 

example fig 7.3 - simple steam power plant cycle - not

typical - pump handles mixture of liquid and vapor in such Saturated vapor, 0.7 MPa


proportions that saturated liquid leaves the pump and enters

the boiler. The pressures and quality at various points are

given in the figure. ? Does this data satisfy the inequality of

Clausius? 


⌠ 

inequality of Clausius ...	 ⎮
⎮ 

T
1 

dQ ≤ 0


⌡


heat is transferred in boiler and condenser, both at constant T 

⌠ 1 ⌠ 1 ⌠ 1 1 ⌠ 1 ⌠

⎮ dQ = ⎮ dQboiler +

⎮ dQcondenser = ⋅⎮ 1 dQboiler + ⋅⎮ 1 dQcondenser
⎮ T ⎮ T ⎮ T Tboiler ⌡ Tcondenser ⌡

⌡ ⌡ ⌡ 

on a per unit mass basis	 mass := 1kg := 106Pa kJ := 103J kPa := 103Pa 

kJboiler ... p1 := 0.7MPa hfg := 2066.3 
kg 

T1 := 164.97 deg_C steam tables Table A.1.2 

kJ 
q1_2 := hfg q1_2 = 2066.3 

kg 
q = Δh from first law 

kJ	 kJ 
pcondenser = p3 = p4 = 15kPa hf := 225.94 

kg fgh := 2373.1 
kg 

T3 := 53.97 steam tables Table A.1.2 

x3 := 0.9 h3 := hf + x3⋅hfg 

kJ 
x4 := 0.1 h4 := hf + x4⋅hfg q3_4 := h4 − h3 q3_4 = −1898.48 

kg 
T_deg_C + 273.15 = T_deg_K 

q1_2 q3_4	 kJ
int_dQ_over_T := + int_dQ_over_T = −1.087 deg_K is < 0


T1 + 273.15 T3 + 273.15 kg


example figure 7.3 pg 188 VW&S 

Boiler Turbine 

1 - saturated liquid, 0.7 MPa 

2 

W 

390% quality, 15 kPa 

Condenser 

4 

10% quality, 15kPa 
Pump 

MPa 

9/25/2006	 4 



entropy 
plot data 

2.5 
two reversible cycles 
from 1 to 2 (not labeled) 
A - B 2 
and ... A - C 

1.5 

1 

0.5 
0.5 1 1.5 2 2.5 

⌠
⎮ 
⎮
⌡ 

1	 A processA process
B processB process

T 
dQ = 0 reversible ...	

C processC process

A -B 2 1⌠
⎮ 
⎮
⌡2 

2 

+ 
⌠
⎮ 
⎮
⌡ 

1 

2 

⌠
⎮ 
⎮
⌡ 

A - C ⌠
⎮ 
⎮
⌡ 

⌠
⎮ 
⎮
⌡1 

subtract second from first => 

1 

⌠
⎮ 
⎮
⌡ 

⌠
⎮ 
⎮
⌡ 

1 1 1 1 1 1
dQ = 0 dQA + dQB dQ = 0 = dQA dQC= 

T TA TB T TA TC 

1 1⌠
⎮ 
⎮
⌡2 

δQrev 

⌠
⎮ 
⎮
⌡2 

reversible ... 

1 1 1 
T 

dQB dQC= so as we did for energy E (e) in first law dQ is independent ofTB TC 

path in reversible process => is a property of the substance 

⎛
⎜
⎝


⎞
⎟
⎠


dS = (7.2), W (2.13)T entropy is an extensive property and 
entropy per unit mass is = S 

⌠
⎮ 
⎮
⌡ 

2 

1 

1 
dQrev. S2 − S1= (7.3)T 
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entropy change in a reversible process example Carnot 

Carnot cycle four basic processes:
 1. reversible isothermal process in which heat is transferred to or from the TH reservoir
 2. reversible adiabatic process in which the temperature of the working fluid decreases from T H to TL
 3. reversible isothermal process in which heat is transferred to or from the TL reservoir
 4. reversible adiabatic process in which the temperature of the working fluid increases from TL to TH 

plot data 

1 to 2 i := 1 .. 2 

2 
1 Q1_2

dQrev. = S2 S1 = 
T TH 

− 

2 to 3 - adiabatic S 
i := 2 .. 3 

⌠
⎮ 
⎮
⌡1 

T 
T

T
T 

3 

3 to 4 
S 

⌠
⎮ 
⎮
⌡2 

1 
dQrev. = 0 S3 − =S2 S3 S2= 

T 

4 i := 3 .. 4 
1 Q3_4

dQrev. = S2 S1 = 
T TL 

− 

4 to 1 - adiabatic 

⌠
⎮ 
⎮
⌡3 

1 S
⌠
⎮ 
⎮
⌡4 

total cycle ... 
i := 1 .. 5 

1 
dQrev. = 0 = S1 − S4 S1 = S4 i := 4 .. 5 

T 

T 

S 

S 

in general .. for reversible process, area under T S curve represents Q 
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⋅ ⋅ 

⋅ ⋅ 

from first law ..two relationships for simple compressible .substance: Gibbs equations in Woud 

p d⋅ 

(5.4)δQ dE= δW+

+without KE or PE δQ dU= δW 

reversible ... δW δW = = ⋅p A⋅dsδQ T d= ⋅ = = 

dU + 

p dV

QED (7.5) 

⋅ as .. e.g. a piston ... F d⋅ 

du 

⋅p dV

(7.7) 

substitute ... T dS

since ... H U= 

⋅ = 

T ds p δv 

T dS V dp T ds v dp

applicable to BOTH reversible and irreversible processes as they are relationships between state variables 

entropy change for irreversible process 

⋅⋅

p⋅ 

dH 

dH dU p dV V dp

QED (7.6) mass ... 

⋅⋅+ + + += = on a per unit 

substitute ... − dh −= = 

0.5 1 1.5 2 2.5 

plot data 

reversible cycle from 1 to 2 
2.5 

to 1 (not labeled) A - B 
and ... 
irreversible cycle from 1 to 2 2 
to 1 (not labeled) A - C 

1.5 

1 

0.5 

A process reversibleA process reversible

A - B reversible ... B process reversibleB process reversible
C process irreversibleC process irreversible

1 

⌠ 
⎮ 
⎮ 
⌡ 

2⌠ 
⎮ 
⎮ 
⌡

1 1
Qd = 0 QAd += 

T TA 
2 

⌠ 
⎮ 
⎮ 
⌡ 

1 
1 

d 
TB 

QB 

A - C irreversible 
2 1⌠

⎮ 
⎮
⌡ 

⌠
⎮ 
⎮
⌡1 

subtract second from first and rearrange ... 

1 1 1 
d < 0 inequality of ClausiusdQ dQA QC+= 

T TA TC 

1 2 1 ⎞⎟ 
⎟ 
⎟
⎠


1 1 1
⎛⎜ 
⎜ 
⎜
⎝


⌠
⎮ 
⎮
⌡2 

dQC 
⌠
⎮ 
⎮
⌡ 

⌠
⎮ 
⎮
⌡ 

⌠
⎮ 
⎮
⌡ 

⌠
⎮ 
⎮
⌡1 2 1 2 

9/25/2006 7 

dQA dQB − dQA > 0+ + 
TA TB TA TC 

2 
1 



1 
1 

1 1 1 
1 1 1

dQB − dQC > 0 dQB > dQCTB TC TB TC 

⌠
⎮ 
⎮
⌡2 2 2 2 

is a property and although calculated for reversible1 

⌠
⎮ 
⎮
⌡ 

⌠
⎮
⌡2 2 

⌠
⎮
⌡ 

⌠
⎮ 
⎮
⌡ 

⌠
⎮
⎮
⌡ 

⌠
⎮
⎮
⌡2 

1 1 process, is identical between states for irreversible.1 
dQB_rev 1 dSB_rev 1 dSC= = substitute into inequality above ...TB_rev 

11⌠
⎮
⌡2 

2 equality holds when
⌠
⎮ 
⎮
⌡2 1 

principle of increase in entropy 

consider system at T and surroundings at To, Q transferred from surroundings to systemδ

than the reversible 

due to above 

⌠
⎮ 
⎮
⌡ 

1 reversible and whenδQ 11 dSC dQC or in general ...> (W 2.14)dS ≥ S2 − S1 ≥ dQTC irreversible, the change ofT T 
entropy will be greater 

δQ for the surroundings, δQ is negative thereforedSsystem ≥
T 

dSsurr 
−

T
δ

0

Q total net change in entropy is ...
= 

δQ δQ 1 1⎛
⎜
⎝


⎞
⎟
⎠


=dSnet dSsystem + dSsurr ≥ − ⋅δQ 

if T > To reverse signs and result 

−= 
T T0 T T0 

⋅ 

since heat is transferred FROM surroundings, To > T therefore ... 

δQ 
1 1⎛

⎜
⎝


⎞
⎟
⎠


dSnet ≥ − ≥ 0 holdsT T0 
thus ... 

principle of increase in entropy 

for all processes that a system and its surroundings can 
undergo =dSnet dSsystem + dSsurr ≥ 0 

dSisolated_system ≥ 0 
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second law for a control volume 

not developed but second law stated in terms of lost work LW 

δQ δLW
dS = + 

T T S2 − S1 1 δQ 1 δLW 
during δt change in entropy is ... δt 

= 
δt 
⋅ 

T 
+
δt 
⋅ 

T 
(7.43) 

St entropy_in_c_v_at_time_t= 

St_δt entropy_in_c_v_at_time_t_plus_δt= 

S1 St si δmi⋅+= entropy_of_system_at_time_t= 

S2 St_δt s e δme ⋅+= entropy_of_system_at_time_t_plus_δt= 

S2 S1− St_δt St− s e δme ⋅+ si δmi⋅−= (7.44) 

etc ..... 

second law for a control volume 

d Sc_v + ∑ (m_dote ⋅se) −∑ (m_doti⋅si) ≥∑ 
Q_dotc_v (7.49) = when reversible 

dt T 
n n c_v 

steady state, steady flow process	 d Sc_v = 0 (7.50)

dt


Q_dotc_v
∑ (m_dote ⋅se) − ∑ (m_doti⋅si) ≥∑ T (7.51) = when reversible 
n n c_v 
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uniform state, uniform flow process 
Q_dotc_v 

T 
(7.54) = when reversiblerewrite 7.49 as ... d 

dt
(m s)⋅ c_v (
 )
 (
 )
+ ∑ −∑ ≥∑m_dote se m_doti si 

n n c_v 

⋅⋅ 

t 

= ∑ 

⌠
⎮ 
⎮
⌡0 

d 
dt 

in control volume 

⋅mi si 

and integrate ... (m s) dt⋅ c_v −= m2 s2⋅

t⌠⎮
⎮ 
⎮⌡ 

m1 s1 

m_doti si⋅ 

⋅ 

( )
t⌠⎮
⎮ 
⎮⌡0 

(
 )
∑
 = ∑dt(
 )
 (
 )
∑
m_dote se 
n n 

⋅ dt me se 

−∑ 

⋅ 

⋅ 

n n 
0 

∑

⌠
⎮
⎮ 
⎮
⌡ 

) 
t 

Q_dotc_v(
 )
 (
+∑therefore for time t dt (7.55) = when reversible− ≥m2 s2 m1 s1 me se mi si 

0 

⋅ 

since the temperature over the control volume is uniform at any instant of time 

⋅⋅
T 

n n c_v 

t t⌠
⎮ 
⎮
⌡0 

and second law for a uniform state, uniform process is ... 

uniform state, uniform flow process 

⌠
⎮ 
⎮
⎮
⌡0 0 

⌠
⎮
⎮ 
⎮
⌡ 

t in first integral T can be a function ofQ_dotc_v Q_dotc_v1
∑
 ∑⋅ space (location in c. v.) U(niform) S(tate)d Q_dotc_v d dt t t= = 

T T T => T only dependent on time
c_v c_v 

t 
Q_dotc_v (7.56) = when reversible

⌠
⎮ 
⎮
⌡ 

⋅⋅m2 s2 m1 s1 me se mi si⋅ 

0 

steady state, steady flow process 
assumptions ...

⋅

 1. control volume does not move relative to the coordinate frame
 2. the mass in the control volume does not vary with time
 3. the mass flux and the state of mass at each discrete area of flow on the control surface do not vary with


time and .. the rates at which heat and work cross the control surface remain constant.


example: centrifugal air compressor, operating at constant mass rate of flow, constant rate of heat transfer to 
the surroundings, and constant input power. 

uniform state, uniform flow process USUF 
assumptions: 

1. control volume remains constant relative to the coordinate frame 
2. state of mass within the control volume may change with time, but at any instant of time is uniform


throughout the entire control volume - I define this as f(t) but not of space

3. the state of mass crossing each of the areas of flow on the control surface is constant with time


although the mass flow rates may be changing


example: filling a closed tank with a gas or liquid, discharge from a closed vessel. 
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+∑ −∑− ≥ dt 
T 

n n 


