
Propeller Design (Detail Stage) 

To this point we have developed the KT vs J2 (J4) design approach. Most references present the series data in 

alternative format. One version is curves of constant efficiency and 1/J on a scale of P/D vs BP1 or P/D vs 

Kq1/4*J-5/4. These are due to D. W. Taylor plotting the series data using BP which we will define later. The best 
description of use of the forms of the charts I found was in PNA, page 159 Propulsion and Propellers Section 10: 
Propeller Design, by Karl Schoenherr. The following is excerpted from the text: 

The procedure in using these charts depends on the nature of the problem to be solved; that is, on which 
data are known and which are unknown. In general, propeller design problems belong to one of the 
following categories: 
1. Preliminary Design. 
a. Given: The designed speed of the ship, the corresponding ehp and the propeller diameter .Required:

The propeller pitch and the rpm for best efficiency. 

b. Given: The designed speed of the ship the corresponding ehp and the engine rpm. Required: The

propeller pitch and the propeller diameter for best efficiency. 

2. Final Design. 

Given: The ehp curve as a function of the ship speed, the propeller diameter, and the power output of

the engine at the designed rpm.

Required: The propeller pitch, the efficiency and the ship speed obtainable under the given conditions. 

3. Analysis. 

Given: The propeller dimensions, the ship speed, power, thrust and rpm. 

Required: The true slip, wake fraction and thrust deduction. 


The KT vs J2 (J4) design approach we have done to date is directed at 1. Preliminary Design. At this stage, 
the power required is determined based on a reasonable first estimate of propeller efficiency determined with 
this approach. The propulsion plant is then sized accordingly. The propulsion plant may have discrete 
incremental sizes and thus may not exactly match the first estimate exactly. The ship design proceeds, 
perhaps a new resistance (close to preliminary design) etc, is obtained and then Final Design takes place. At 
this point, PD (power delivered) to the propeller is known. It may not match (exactly), the preliminary estimate, 
hence the V  may be different.s


Taylor selected two parameters for plotting information for design work:

BPn = N * P1/2 /VA

5/2  where N = rpm, P = power delivered (hp) ( = Q*2*π*N) and VA = speed of

advance (kts), n = number of blades

 and ..


BUn = N * P1/2 /VA
5/2  where N = rpm, U = useful power (hp) ( = T*VA) and VA = speed of advance


(kts), n = number of blades


These are not non-dimensional but Taylor thought that was ok "since propellers work in water of practically 
constant density, which will be taken care of by the constants used". S&P page 100 
This motivated NSMB to present the data on plots of P/D vs KQ^1/4*J^(-5/4) = BP^1/2* constant which can be 
shown to be equivalent as follows: 

see B_series_units_US.mcd 
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removing units 1 
another approach which accommodates other 

⎛ 550 ⎞
4 units for PD, VA and n is shown in

ρ := 1.99 = 0.1728⎜ 5 2 ⎟ B_series_units_conversion.xmcd2 π⋅ ρ⋅ 1.688⋅⎝ 60⋅ ⎠ 

regression coeff. Re=2*10^6 

details 

form of plot shown in PNA: P/D vs Kq1/4*J-5/4. Curves are constant η and 
1/J. These are derived from the same data as our previous KT KQ curves. 
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an example of use of these curves ... 

100say we have a design such that: PD := 16000hp n := VA := 16knot 
min 

n PD
0.5 

VA
2.5 

BP1 := BP1 12.353
hp0.5 = 

BP_ans := BP1 v_line := .. 1.5 
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we will plot that vertical line on the curves and determine the maximum efficiency, P/D and δ 
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it appears that δ for the max η is δ0 := 140 η0 := 0.67 P_over_D0 := 0.98 approximately 

n D⋅ 

VA
δ = 

ft D := 
δ0⋅VA 

⋅ 
ft 

min knot n min knot⋅ ⋅ 
D = 22.4 ft 

let's say the diameter is limited to 20 ft by another constraint D1 := 20ft

n D1
⋅ 

VA

δ1 := 

ft δ1 = 125 then the best situation is


min knot⋅ 
η1 := 0.65 P_over_D1 := 1.25 approximately 

N.B. The shape of the developed curves is generally OK. I'm not completely confident in the exact values. The 
validation is not as close as I would like. 
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