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Oscillating Rigid Objects
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‘Potentials and Boundary Conditions

[ro—

A

6
¢r = ¢I+¢D—I—21:Cj¢j

On the Free Surface:

0 o O 0 B
{—w —Uzw52+u62+ga}¢ =0
and: |—w* — U1 2 82—}- 0 $;j =0
L |t - Vit utas ol 6 =
On the Hull:
261 , p _,
on on

Pressure on the hull:

p= (W U— ) pre™t — pg((s + Cay - GsT)e_wt
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Strip Theory

nl |
Mol
\“ & 7)( m
| Kl
\_.__.__.._._.___.___.___.. .ll
m = surge 73 = heave ns = pitch
N2 = sSway n¢ = roll e = yaw

Sign convention for translatory and angular displacements

For inviscid, irrotational theory,
6
ér = ¢1r + ¢p + Y n;¢; + interaction terms
k=1
In linear theory the interaction terms are neglected. Here we focus on the
¢;’s and the forces and moments associated with them.

In general, a force in the j’th direction will lead to motions in the six
degrees of freedom, nx, k= 1,2,3,4,5,6.

Sinusoidal forces which generate sinusoidal motions are considered. The
equations of motion for sinusoidal excitation are:

6 .
> {(Mjx + Aji)iik + Bixiie + Cirne} = Fjet, 7=1,2,3,4,5,6
k=1 i

M (t) = Cpe™

6 .
Z {—w2(Mjk + A]k)Ck + iWBjka + CJka} = F}': ] = 17 27 31 4) 57 6
k=1
6
S [0 (M + Aj) + iwBj + Ci| G} = Fj, 7=123,4,56
k=1
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— M1k is an inertial force in the j’th direction due to motion in the k’th

direction.

'—Ajkﬁk, —Bixnk, and —Cjrmy are hydrodynamic and hydrostatic forces in
the j’th direction due to motion in the k’th direction.
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For a ship having port/starboard symmetry:

[ M 0 0 0 Mz O
0 M 0 —-Mz. 0 0
0 0 M 0 0 0
My =1y Mz, 0 I, 0 —I
Mzz. 0 0 O Iy 0
0 0 0 —Iy 0 I
il A11 0 ais 0 A15 0
0 Ay 0 Ay 0 Ao
A A31 0 A33 0 A35 0
FT1 0 Ap 0 Ay 0 Ag
0 A62 0 A64 O A66
[ By 0 By 0 By 0
0 By 0 By 0 Bog
B' . B31 0 B33 0 B35 0
710 Ay 0 By 0 By
0 Bg O Bgs 0 B
00 0 0 0 O]
00 0 0 0 0
Cor — 00 C33 0 035 0
FT100 0 Cu 0 0
00 Css 0 Cs O
00 0 0 0 O]
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Boundary Conditions on Hull

ST'IP

L \

/

\u \

/

n=(n;,n,,n) A ¥n,
Definitions: (ny,ng,n3) =7
Except for j = 5and j = 6:

’LU) zw 6¢ zw
<J¢J t= _Cae th CJ Lt

+«—U

(n4,n5,n6) =TXTn

wit %
on

= (jiwnje = 1Wn;

For j = 5 (pitch) and for j = 6 (yaw) there is a change in the normal

velocity associated with U:

Here, for positive pitch, there is an upward (positive z) component of veloc-
ity equal to —U(se™*. This has a component normal to the hull surface of

~U{s e¥tns.
For n = 5: %:iwn5+Un3
' on
For n = 6: %:iwnﬁ—Unz
on
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For slender ships surge forces F; are much smaller than the other forces. Fur-
thermore, surge motions have little effect except for the special case of towing.
We neglect surge here.

Under these conditions, the pitch and heave equations are decoupled from the
sway, roll and yaw equations.

PITCH AND HEAVE EQUATIONS

[—w?(M + Ass) + iwBss + Cas) (3 + | —w” Ags + iwBss + Css) (5 = F

[~w?Ass + iwBss + Chs] (3 + [—w?(I5 + Ass) + iwBss + Css| G = Fy

Hydrodynamic and Hydrostatic Coefficients
The hydrodynamic forces on the ship due to oscillatory motions of the ship are
called radiation forces. For a motion of the form ny(t) = (xe?, the linearized
force in the j direction is called Tje™*. Tj; will be a complex number having
areal part and an imaginary part. It is conventionally written in the following
form:

Tk = (w*Aji — wBjx — Cik)Ck
Aji is the added mass for forces in the j direction due to motion in the k
direction.
By, is the damping coefficient for forces in the j direction due to motion in
the k direction.
Cjr, is the hydrostatic “spring constant”.

de
U 4 A
Aszz = /L azzd§ — ;5533 B3z = /L b33d€é + Uags
U U U?
Ass = — /L fazsd€ — EB:??, + —Jg—mAb?fi - ;7“%%
U?
Bss = — /L§b33d§ +UA3; — Uz gass — Ebé‘l?,

A§; and Bg, are the speed independent parts of the respective coeflicients.
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u_, U
A53 = — /Lfa33df + EB% + ;51:,46343

Bsz = — /L Ebszdé — U A% — Uz 4b%

L g
Ass = — /L§2a33d§ + JA33 zbgs + 2 5T 4033

U? U?
B55 = / g b33d§ + B33 Uan:33 + xAb

Css = pg [ bdé = pgAwp

b is the beam of each section and Awp is the waterplane area.

Cs5 = Cs3 = —PQ/Lfbdf = —pgMwp

Css = py [, €%bd = pglwe

My p is the moment of area of the waterplane and I, is the moment of inertia
of the waterplane.

U
= ha)d I
3 Pa/L(f3+ 3) §+,0aiw5€A 3

U U
Fy = —pa/L [ﬁ(f?» + h3) + Eh:;] df — paaxAhz,,A

a is the wave amplitude. f3 = F3e™! is the Froude-Krilov force.
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F3(.’L') _ ge—ikzcosﬂ/C N3eikysinﬂekzd£

N3 is the vertical component of the 2D normal to the section. N, is the
horizontal component of the 2D normal. 3 is the wave propagation angle. d/
is the element of arc length around the section.

hs is the sectional diffraction force.

h3(:p) = woe—ikxcosﬂ/c (’iNg + Ny sin ﬁ)eikySinﬁekz¢3df

w(,:\/g_k w, =w + kU cos B

13 is the velocity potential for a 2D cylinder of shape C, oscillating in heave.
13 is the solution to V243 = 0 subject to the boundary condition for heave
motion. It can be obtain by several ways including panel methods.

/ // // // |
777/

Thus, to do the the longitudinal integrals (d¢), one must know the 2D hy-

drostatic terms and the 2D added mass, damping, and velocity potential for
heave.
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SWAY, ROLL AND YAW EQUATIONS

[—w2(A22 + M) + ’inQQ] C2+[-—w2(A24 - M‘Zc) + inQzl:l C4+[—w2A26 + 'L'(UBQG} Cﬁ = FQ

[—WQ(A42 — Mzc) + in42] (o + [—wQ (A44 + 14) + twByg + 044] 4
+ [—w2(A45 — 146) + z'wB46] C(; = F4

[—w?Ags + iwBga| Gt |—w*(Ass — Lug) + 1w Bea| G+ |—w?(Aes + Is) + twBs| (6 = F

All the coefficients can be determined from the 2D sectional sway and roll
added mass and damping, the 2D sectional potentials for sway and roll and
the hydrostatic roll restoring force.

For all the five motions considered, the response at the resonant frequency is
largely controlled by the wave generation damping (B coefficients) except for
roll where the damping at resonance is dominated by the viscous damping.
Therefore, for strip theory to give accurate results for roll, an estimate for the
viscous damping coefficient must be added to Bss.
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SIMULATIONS OF SHIP MOTIONS IN RANDOM SEAS

The complete problém includes effects of waves coming from all directions.
Here, for simplicity and clarity we will consider long-crested random waves
coming from one direction.

The “system functions”, €;(w), are complex numbers, dependent on frequency.
For each one, the magnitude is the ratio of the sinusoidal motion amplitude to
the wave amplitude. The phase is the phase lead of the motion with respect
to the wave elevation at the origin of the coordinate system.

Suppose we have a wave spectrum, Se(w). The wave elevation at the origen of
the ship, or offshore structure, at the origin of the coordinate system, can be
simulated as:

N )
Cw (t) — Z Zn ez(néw)t
n=-N

where: Z, = ei"‘"J %Se(néw)dw

Within the restrictions of linear theory, each ship motion can be simulated in
the specified random wave field as:

N .
() = 3 &(ndw)Zpe' ™"

n=—
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Added Resistance and Drift Forces

An important ”second order” effect is the average force an oscillating wave
field can imoise on an object. These forces are typically small in comparison
of oscillating forces and spring-like resorting forces 'so the horizontal mean
forces are most important. For a ship, this force is called the added resistance
and for an offshore structure it is called the drift force.

One again, for simplicity and clarity we will consider waves propagating in a
single direction. If a sinusoidal wave has amplitude A, the dominant mean
force has the form r,(w)A% ry(w) is called the added resistance operator. It
is found by solving the second order hydrodynamic problem. However, Some
first order effects contribute.

Consider the term in Euler’s equation (V - V)V When V is sinusoidal, this
term will contribute zero frequency terms.

In the presence of a wave spectrum S(w), the total added reesistance is:

Raddea = || 2ra(w)S(w)dw

RCE
AEDED RESISTANCE DRIFT F?,
/WL\/— —— ———
4
WAVES

(224
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Gerritsma and Beukelman Theory for Added Resistance

The “exact” formulation for the added resistance operator, r,(w) requires
solution of the complicated 3-D second order problem. However, Gerritsma
and Beukelman ! developed a semi-empirical formulation for r,(w,) based on
strip theory that is remarkably accurate. The basis of their theory was as
follows:

1. Each section of the ship encounters a relative vertical velocity that de-
pends on the wave, and the heave and pitch of the ship.

2. This relative vertical motion generates waves which carry energy away
from the ship.

3. Equating this radiated energy, per unit time, to the added resistance times
the ship speed provides a formula for the added resistance.

This formula is:

o) = 5 [N(x) - Vd”;f)} V2(z)da

where the ship extends from 0 to £ and k£ = wavenumber of the wave,

N(z) = heave damping coefficient per unit length of ship at position z,
V = forward speed of ship,

m(z) = added mass per unit length of ship cross section at position z,

V,(z) = relative vertical water velocity amplitude at position z.

V,=3—20+V0-(,

where Z is the heave velocity of the ship at z = 0, 6 is the pitch angle of the
ship, and (, is the average of the velocity of the fluid motion in the wave over
the width of the ship cross section at its local depth.

1Gerritsma, J., and Beukelman, W., “Analysis of the Increase in Resistance in Waves of a Fast Cargo
Ship”, Technical report 169 s, Netherlands Ship Research Centre TNO, April, 1972
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Nonlinear Wave Force Calculations

Second order wave forces arise both from the second order potential, which in-
creases the accuracy with which the nonlinear terms in the free surface bound-
ary condition are met, and also from the influence of the first order solution
on the nonlinear term in Euler’s equation. For example, consider the term:
ug—;‘. As an example, a field of two sinusoidal waves is :

u = A;sin(k1z — wit) + Ag sin(kox — wot)

g—z = A1k cos(k1x — wit) + Agky cos(kax — wat)
At 2 =0:
u = —A; sin(w;t) — As sin(wst)
ou
—8} = A1 COS(wlt) + AQ COS(LUgt)
6’11, ) . .
uég = —Ajk; sin(wit) cos(wit) — Ay Agks sin(wyt) cos(wat)

— Ay Agk; sin(wst) cos(wit) — A2k sin(wat) cos(wat)

Consider just one of the four terms:

(u?ﬁ> = —A;Asky sin(w;t) cos(wot)
6$1

= —A1§2k2 sin(w; + ws )t —

AlAzkg

sin{w; — wy)t

If wy and ws are only slighitly different, w;-+ws is a comparatively high frequency
and w; — wy is a very low frequency.
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Vertical Sea Loads v. ! V,
3
[ Veq
pal | / v
K x H ~ !

e,
rd

V = compression force Vi = torsional moment

V, k;onzontal shear V, vertical bending
orce
_ ‘ moment
3 v{f)x;tégal shear Ve = horizontal bending
moment

The complete strip theory sea loads are considered in the reference ”Ship Mo-
tions and Sea Loads”, by Salvesen, Tuck and Faltinsen. Here we consider the
vertical loads which lead to the shear force, VJ and the longitudinal verti-
cal bending moment, V. Sinusoidal forces and motions are considered. For

example,

Vj’ = V}-ei“’t where the real part of all complex expressions is implied

Likewise, n; = (;e™"

The fluid forces are separated into hydrostatic forces R;, sea wave exciting
forces E;, and hydrodynamic forces resulting from unsteady ship motions D;.
I; is the inertial component of the j* structural force due to motions of the
ship. Then, the structural loads can be expressed symbolically as:

Vi=1Ij— Rj— Ej— D

We are concerned with terms having subscripts 3 and 5. All the longitudinal
integrals in the following are over the portion of the ship forward of the section
under consideration. We denote these integrals as:

Iy= [, —w*m(€) G — &) d
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D; =

D5:

Iy = — [, —w'm()[€ o[ — £ d
Ry =—pg [, b()[Gs —&Gs] de

Rs = pg [, b€)[€ —a] [ — £¢5)de
E3 = pa {./L,(f3 + h3)d€ + (%h:a){:gt}
B = pa [, {(6=a)(fstho) + Lot e

~ ], {ePass(G 7 £G6) + awbis(Gs — 65) + UbsGs + ilimsGs} d —

72
— {iwaszsU(C's — &C5) + Ubss(G3 — €¢5) + Uags(s — %533@}
E=x

a3(€§ — z) {—w* (G — €¢s) + iwbsy(Gs — €5 )} dE +

Ly

2
/Lf {iWUa?,:s(Cs —2(5) + Ubs3(G — 2Cs ) + UaszsGs — Z—w-b33C5} d¢
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