PANEL METHODS
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Sketch of an Object in a Uniform Stream
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Boundary Condition on Perturbation Potential
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Three Dimensional Flows
0 (x,y, z) outside S
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where: 7 = /(z — €)2 + (y — 1)? + (z = ()?

G can be taken as: G = -+ H(z,y, 2,£,7,() where H is an analytic function
(V2H = 0 in both (z,y,z) and in (£,7,¢) coordinates. It is used sometimes
when a particular H makes the integrand zero on flow boundaries external

to an object, thereby removing the necessity of integrating over them.
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Interpretation of Green’s Theorem

Sketch of Streamlines from Sink and from Dipole

Sink Dipole
Sketch of Sink and Dipole Streamlines

The velocity potential inside the fluid domain and on object surface expressed
as distributions of sources (or sinks for the Green function we have chosen)
and dipoles on the surface of the object.

G(z,y,2,£,m,C) is the velocity potential at (z,y,2) due to a point sink of
unit strength at (£, 7, ()

A sheet of of sinks with strength o per unit area causes the normal velocity
to jump by 4mo when crossing the surface from inside the object out into the
fluid.

% is the velocity potential at (x,y, z) due to a point dipole of unit dipole

moment at (£,7n,{) with the axis of the dipole normal to the object and
pointing out of the fluid and into the interior of the object.

A sheet of dipoles with strength p per unit area causes the velocity potential
to jump by —4mu when crossing the surface from inside the object out to the
fluid. That’s why the dipole moment per unit area needs to be ¢ to generate
a velocity potential of —47m¢ in the fluid just outside the surface and in the
fluid.
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Arrangement of the Integral Equation
e arrange the equation for ¢ in the form of an integral equation with
unknowns on the left and known quantities on the right.

e The equation will be applied on the surface of the object where the
boundary conditions specify part of the equation.

e Excluding an infinitesimal surface around the point (§,7,¢) = (z,v, 2)
from the region of integration makes the constant on the right hand side
of the equation equal to 27 instead of 4.

For problems where g—g is known on the fluid side of the surface, we write the
equation for the unknown ¢ with a known right hand side.

//¢—dS§ng+27r¢:C Y, 2 //Ga¢d5§n<

When we substitute Ui - n for % the integral equation for the unknown
velocity potential ¢ is:

I/ qﬁ%—g dSenc +2md(x,y,2) = [ [ GUE-n(7,) dSenc
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Numerical Form of the Integral Equation

Sketch of an Object Surface Divided into Quadrilateral Panels

e A quadrilateral panel with four corners on the surface will not necessarily
be planar.

e The simplest approach is to use approximating planar panels with ¢
constant on each panel.

e For an approximating planar panel, j, place panel centroid, ¢; = (§;,7;,¢;)
on the actual object surface and orient the panel such that its normal is
in the direction of the cross-product of the two diagonal vectors of the
non-planar panel.

e This leaves gaps between the panels which are sources of error. However,
the smaller the panels, the smaller the gaps. A less erroneous procedure
uses non-planar panels, but the integrations for the discretized equation
becomes more complicated.
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Making the Numerical Equations

e Write a separate equation for values of (z,y, z) at the centroid of each
panel.

e There are N centroids where ¢ will be calculated so there will be N
equations.

e The calculation (field) points, which are the panel centroids will be la-
beled by the index i and the value of ¢ on the i** panel is called ¢; These
are the unknowns.

e For each equation (one for each of the N valies of 7), the integrals on the
right hand side are done over each panel (j) individually and the results
are summed together.

g// #(&,m, C Gy ng,n<+27r¢J ij = Z// GUU?’ nJ(§ UB C)dsﬁné
j=1

5ij:{1 lf’l,:]‘

0 otherwise

The symbol G;; means the Green function with the field point at the centroid
of the i** panel and with the source point varying over all locations in the
j** panel as the integration is carried out. Since, in the approximation being
used, ¢ is a constant,

N .
Z % | / s ny LoEn¢ £ 2M0505 = 2 [ Jo GyUt-mi(8,m,¢) dSen
S; j=1 5

Define:

/

N 2
> [ f,, Gl my(€m,C) dSeuc = B
1= 7

= A
S; O “ “

and
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For planar panels, n;(¢,n, () is a constant on each panel and we call it n; and
then U - ny(€,n,¢) is a constant on each panel so that:

Bi = Jg:lU’z . nj//sj Gij de,U,C

The final set of equations for the IV values of ¢ is:

N
Z Aij(bj = Bz equivalently A¢ =B
Jj=1
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Solution Steps

e Do the numerical integrals to generate the matrix A and the vector B
which are integrals of G and %ﬁ—.

e For each field point 7 integrals must be done for all N values of j. .

e Once A and B are determined, solve the set of linear equations is solved
for ¢.

e When the number of panels is less than a few thousand, it is practical to
solve the equations by Gaussian Elimination, or an LU decomposition.

e The burden of carrying out these procedures is removed from the MAT-
LAB user by obtaining the entire solution for all the values of ¢ with
the MATLAB statement: ¢ = A\B.

e After ¢ and g% have been determined on the surface of the object the
numerical approximation to the left hand side of Green’s Theorem can
be used to compute ¢ at any point in the fluid.

e The usual goal of a panel method in fluid mechanics is to find the pressure
distribution on an object from which the forces and moments can be
computed. With inviscid fluid mechanics for which the panel method
was developed, the local pressure, P is given by Bernoulli’s equation:

0
P=p[-2 —|VoP gz

p is the fluid density and g is the acceleration due to gravity.

The first term on the right hand side applies to time-dependent motion.
Although this has not been considered explicitely here, one can imagine an
object moving sinusoidally so that in a reference frame attached to the object
U is sinusoidal and the solution has time dependence. The third term is
simply the hydrostatic pressure. The most difficult term on the right hand
side to compute is generally the second. It is the square of the velocity at
the object surface.
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Two Dimensional Panel Methods

The development for two-dimensional flows is similar to the 3D case, except
that two dimensional source functions are involved and the dimensionality of
some integrals and associated constants are different.

Two dimensional flows are either mathematical abstractions with all flow
directions in a two dimensional plane or physical approximations for long
prismatic objects with an inflow that is perpendicular to the long axis.

Objects for which the Flow is Nearly Two-Dimensional

For the two-dimensional case, Green’s Theorem, is:
? )

PYe ¢ 0 (z,y) outside S
/L [ o Ga—} dl = —mp(z,y) (z,y)on S
" " —2n¢(x,y) (x,y) inside S

and the Green function is:

G(z,y,&,n) = —In\/(z — €2+ (y—n)?) = —Inr
where: r = \/(z — €)% + (y — n)?

As in the 3D case, in 2D flows, sometimes the Green function is taken as
—Inr + h(z,y) where h is an analytic function which means % + g%% =
0. Green’s Theorem, still holds with this Green function. It is used for
problems with boundaries on which the integral in Green’s Theorem vanishes

to simplify the integrations that are necessary.
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For an incomming stream in the —z direction the total potential is:
® = —Ux + ¢, the boundary condition for the perturbation potential, ¢ on
the surface of the vehicle is %2 = U ¢ - n on the object surface.

The integral equation for the unknown function, ¢(z, y) on the object surface,
having unknown quantities on the left and known quantities on the right hand
is:

oG

J,#Em 7 dben+7(e,y) = [ GUi-ndl,
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Numerical Form of the Two Dimensional Integral equation

The 2D curve is divided into panels which become segments of a curve:

L3 L

Panelization of a Two Dimensional Object

e Each panel( actually a line) is defined by two vertices on the object
curve. Panel 1 extends from vertex 1 (labeled v; in the figure) to vertex
2, panel 2 extends from vertex 2 to vertex 3, etc.

e The centroids of each panel, are at the mid-points of the arc length of
each panel. For flat panels, straight lines are drawn between adjacent
vertices and the centroids, called ¢; are moved to the midpoints of each
straight line panel.

e The unit normal vector, n; on panel ¢, is a constant along the length of
the panel. The panels are defined by the (z,y) values of the two vertices
at the panel ends.

e For the simplest implementation the potential, ¢, is approximated as
being a constant on each panel.

With these approximations and definitions, the numerical form of the integral
equation is:

N an N a
Z-=Zl¢j/Lj Wjdﬂj—l—ﬂgbjéij ZJ;U’L‘HJ/LJ_Gijdfj
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Analogous to the 3D case, we define:

8Gy, L
/I/j anj dfj +7r52-]- = A;j
and
N o
;UZ'nj/LjGijdgj EBZ

J:

Again, the final set of equations for the N unknown values of ¢ is:

N
ZAZJ¢]:B1 or A¢=B
Jj=1

Calculation of A;; and B;

For a field point ¢ located at the midpoint of the i'th panel we need to
determine for each panel j the value of A;; by integrating %?5 over the j’th
panel. We also need to determine B; by summing up the terms in the equation
for B;. General purpose MATLAB m-functions for doing these integrals exist

and will be provided to students.
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Situations With the Generation of Lift

e If the object in a streaminf flow has a sharp trailing edge, it will usually
generate lift.

e The lift is related to circulation around the object so that ¢ jumps acorss
the trailing edge. This results in a “wake” across which the potential
jumps by the same amount as at the trailing edge.

e To obtain a flow domain in which the velocity potential is analytic (sat-
isfies V2¢ = 0) the wake must be excluded from the domain. The line
of the wake can be treated as part of the object upon which there is a
uniform strength dipole sheet which makes the velocity potential jump
when crossing it.

e Here we will use an approximation in which the wake is presumed to
follow the free stream direction. Theoretically, the wake is infinitely
long. For practical purposes, we can model the wake as being about two
airfoil chord lengths long since dipoles further than this from the object
(airfoil) will have negligible effect on the flow on the object.

y
Expanded View ‘n =-Nn,
of Wake .......................... rersresssasesarannnnranay . "

A Two-Dimensional Lifting Airfoil With a Wake
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e Green’s theorem is applied to a curve which starts at the far end of the
wake at the bottom, goes along the bottom of the wake, goes around
the foil, and finally goes along the top of the wake. On the top and the
bottom of the wake, on any wake panel, %2 are equal and opposite For
any control point on the foil where the potential is to be determined
and a source panel on the wake, G is the same for the two elements
of the integration path, one on the wake top and one exactly under
it on the wake bottom. Therefore, for the control points on the foil,

Jwake GE2dl = 0.

e At the start of the wake at its junction with the airfoil, there is a jump
in potential in going from the bottom to the top.

d)wake top — waake bottom = Ad) = ¢N - le

This jump in potential is maintained all along the wake because as one
moves aft along the wake the potential changes the same amount on the
top and on the bottom by [ .4, u(x)dz.

e Thus, for control (field) points on the foil, with L being the path around
the foil, W being the single line along the wake from its aft most con-
sidered point to the trailing edge of the foil, and n on the wake pointing
downward for the configuration shown in the Figure , Green’s theorem
takes the form:

8G oG .
/(& N5, ey + . Ag o dley + m(x,y) = [ GUi-nde,

e If the wake panels are labeled N + 1 to M with lengths ds;_, the dis-
cretized form of the equations appropriate for numerical solution for
values of ¢ at control points, 7, on the foil are:

N an i
S0 ), Grldtton—gy) S [ S

el i = ZUmJ / Gi;de;
Jw=N+1
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To put the preceding equation in the same format that was used for the
non-lifting case, we define:

0Gi;.,
anw

0G;;
/L Ldl; + m o + /ij Al (058 — 0j1) = Qi

J anj
Then, the final set of equations to be solved is:
N
> Qij 5 = B;
j=1
which has the matrix notation:

Q¢=B
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Computation of pressures and forces

For steady flow, Bernoulli’s equation for dynamic pressure is: P = —p|V/?
This presumes that in the very far field, the pressure is hydrostatic and
there is no dynamic pressure there. In unsteady flows, there is an additional
contribution to the dynamic pressure equal to — p%? which is straightforward
to compute at each control point.

Here we concentrate on computation of the —rho|V|? term in the dynamic
pressure. It is most convenient to know this pressure, F; at each control
point. Then the force is: F = ¥, Pin;d¢;

The central problem is calculation of the velocity at the surface of the object.
At each control point, 4, the total flow is tangent to the object surface so we
need only find tangential velocity. The tangential velocity is the tangential
derivative of the total potential, ® (perturbation potential plus any exterior
potential such as —Uz for the steady flow problems we have been considering).
For two-dimensional flows the tangential velocity component has a single
direction at each control point. We know how to determine the tangential
derivative at a point using a modified central difference procedure for smooth
objects. Even when the object has a sharp edge, this procedure can be used
for all control points except for those adjacent to a trailing edge. In addition,
the numerical derivative can be determined at a point that is midway between
the first and second control points from the trailing edge. Then the tangential
derivative can be approximated at a control point nearest the trailing edge
by numerical extrapolation. An example follows.

We know how to calculate the numerical tangential Derivative, called dy at-
Control point 2. The lengths of the panels are called L, Lo, ... The tangential
derivative at point m, called d,, is given by:

Py — P

Ay =
0.5(Ly + Lo)

Then, by extrapolation, the derivative at control point 1, called d; is numer-

ically approximated as:
ds — dp,

dl—_—dm—a b
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COntrol
Point 3

Tangential Derivative at a Control Point Near a Sharp Edge
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