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Numerical Integration
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Numerical Integration

1. Used to integrate a function that we do not know how it integrate by quadra-
ture. For example, suppose we seek I = [33 exp(v/z + z3dz

2. Used when we want to determine [° f(z)dz and we have a set of pairs of
values of [z, f(z)]
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One approach, which we will not consider in detail here, is to fit a polynomial
to the integrand and then to integrate the polynomial analytically.

The approach we follow here is to consider integration rules which provide a nu-
merical approximation to the integral in terms of discrete values of the integrand
for a set of values of x.

Rectangular Rule approximates the function by a set of rectangles and esti-
mates the integral as the sum of the areas of the rectangles.
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Trapezoidal Rule ,
The trapezoidal rule fits a trapezoid to each successive pair of values of [z, f(z)]
and estimates the integral as the sum of the areas of the trapezoids.
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By expanding f(z) in each interval as a Taylor series we find the error in the
approximate integral, Er is given by:
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where 7; is some value of x in the 7** interval. Since the number of terms in the
sum is proportional to 1/h, smaller intervals result in less error.
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Estimate 3 - Usual Trapezoidal Rule
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Simpson’s Rule

Simpson’s rule fits a parabola ( 2™ order polynomial) to each interval between
(@, f(z;)] and [z;42, f(zit2)] and estimates the integral as the sum of the areas
under the parabolas.
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For Simpson’s Rule, the intervals [z;41 — ;] and [z;12 — z;11] must be equal and
the x-distance interval length is called Az. For three values of z;; a,a + Ax,b
the integral is

[ 1@z ~ ZE15(a) + 47(a+ Ax) + F(0)

Simpson’s Rule requires that there be an even number of intervals which means
that there are an odd number of data pairs [z;, f(x;)] Then the integral is ap-
proximated by the sum of the areas under the approximating parabolas as
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For the usual case of equal spacing, Az, of all the z;’s, Simpson’s Rule can be
expressed as:

/m m f(z)dz ~ — {f (z1) + f(zn) + 4 f(:cz) +2 F(z:)

1=2,4,6,.. 1=3,5,7,...
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