Numerical Differentiation
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Finite Difference Differentiation

o+ h)— flz,
Formal Definition of the Derivative f'(z,) = ;IE,% fl@o+ })L f(z,)

If we simply let h be “small”, we have an approximation to the derivative,

a1 )= 2

If A > 0 this is a forward-difference formula and
if h < 0 this is a backward-difference formula.

It has a unique relation to the Taylor series for f(z, + h)

F(@o+B) = F(zo) + hf'(z4) + %hQ FIE),  E€ (z0,30+h)

e = Lt T

[}

Our approximation to the derivative is obtained by dropping the last term
which introduces an error of O(h). The smaller the value of h, the smaller the
mathematical error. However, very small A results in numerical subtraction of
two “nearly identical” numbers so it introduces round-off error.

A centered difference formula for the derivative is:

o = Lt =S =)

The error in this formula is O(h?)
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Sometimes the points are not equally spaced so numerical implementation of
the centered difference formula is impossible. Consider the case of y = f(x)
with values at specific points known as sketched below:

For all interior points (z3 to xg) in the figure, interpolation of derivatives at the
center of adjacent points can be used to generate the equivalent of a centered
difference formula at each of the x-points, even when the distnces, L, are not
equal.

The resulting formula is:

Gm — Qm-1 1 [Ymt1  YUm—1
I
(#m) =y 20mqm-1 2|l @ Gma (1)
1
where: ¢, = §(Lm+1 + L)

For estiating the derivatives at the end points, extapolation can be used from
the numerical derivative half way between the two endmost points using the
forward or backward difference formula and the the derivative at the nearest
interior point given by the above formula.
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Sometimes values of a function, y, are given at unequally spaced points around
the periphery of a plane curve as sketched below.

L3 Lo

Ly “——/

L4

The lengths L are arc lengths (s) between points on the curve and values of
y are known at points ( 1, 2, ..., N) on the curve. To obtain the numerical
approximation of the tangential derivative 3/(s) at points 1,2,3, .... N, equation
(1) can be used. However, for point m = 1, special values for some of the y’s
and some of the L’s must be used. In particular y,,_1 = yy and L,,,_1 = Ly.

Likewise for for point m = N, y,,.1 = ¥1 and L1 = L.
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To estimate the error in Simpson’s rule, the function over four successive points
can be expanded in a Taylor series up to order 3. With equally spaced points,
the error in the integral from the cubic term vanishes and the dominant term
in the error is proportional to the fourth derivative d*f/dz*. For equally spaced
points with h = Az, the total error, Er takes the form:

R ntd* f ()

Ep=—
T 90 i=1 dz?

7; is some value of z in the i*h interval.
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