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INCOMPRESSIBLE FLUID MECHANICS BACKGROUND

V:{u+fv+ﬁw

Conservation of Mass, Continuity Equation

divV=V-V =0
ou o
or Oy 9z

Newtonian Dynamics, Navier-Stokes Equations

pv oV o _ - 1 "

=4+ (V-V)V=-VP v

or = 5 ( ) p + vV
P is the dynamic pressure. The total pressure, Pr, is the sum of the
dynamic pressure and the hydrostatic pressure, -p g z, where z is positive

- upwards. Ppr =P —pgz.
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PIV Example

?E_ ou Ov

If PIV is done on multiple planes inside a fluid domain, then 22 5, 1s known

over the whole domain. At a rigid boundary, w = 0 and, in principle, w
can be found anywhere by:

z ow
w= /bmmdary 0z 5, %
Example

In a domain bounded by 0 < 2 < 4, u = (3¢ — 2z¢* — 3)sinz and v = 0
over a range of x and in 0 < z < 2. In this sub-domain,

g—z = (3e* — ze® — 3) cos(x)
%—Z = —(3e* — ze* — 3) cos(x)

w = /———dz— [3¢* — 3 — ze” + €* — 1 — 3z] cos(x)

w= / ——dz = — [4e* — 4 — ze* — 3z] cos(z)
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dw/dz and w(z) at x = 1
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A More Interesting PIV Example

Fng:c

Consider the following flow for z > 0 in a range of x and y. Of course, in
an experiment you would not know the mathematical formulation. Rather

you would just measure u and v over a set of (x,y,z) points.
u(z,y,z) = (360'12 — 3cos z) siny cos T

v(z,y,2) = (360'12 — 3 cos z) cosy

The = and y derivatives of the velocities can be computed numerically
from the measurements. If the experiment were done well, they would

have values according to the following formulae:

0
53 = — (360'12 — 3 cos z) siny sinzx
0
a—; = - (360'12 — 3 cos z) siny
0 0 0
Then, the continuity equation is: w_ v _ov
0z or Oy

The experimentally determined values would have the values given by:

ow

5 = (360'17' — 3cos z) sin y(sin = + 1)

Integrating %’f— from 0 to z at a prescribed value of (x,y) would give w(z)

there. The values obtained would obey:

w = (30€%"* — 30 — 3 sin 2) sin y (sin z + 1)
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dw/dz and w(z) at x=1, y=1
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AVERAGED NAVIER-STOKES EQUATIONS

+ o'

<

V=

2T +9) L (7 +9). V] (7 +3) = 29 (Pap) ¢ 92 (7 4 )

Take Average of above equation:

(V+0) - V] (V4 ) = (V- V)V + (V- V) + (- 9V + (

[V +3) V| (T+9) = (797 + @0
Thus, the Reynolds-Averaged Equation is:

8? = = TS — =
— + (V- V)V + (- V)= ——VP + UV

Oz Oy
E(u,aw’ + v,(?w' N wﬁw’)
Oz Jy 0z

ov [(V+v) v] (i7+67) - —%vﬁwv??

v V)



THE PRESSURE EQUATION FOR AN INCOMPRESSIBLE
- FLUID

Start with the Navier-Stokes Equation

v - . 1 .
— V)V = —ZVP +vV*V
5 +(V-V) p +v

Take its divergence.

Because V- V = 0, the only non-zero terms are:

div(V - V)V = —%V2P

Working out the details of the LHS and interchanging the LHS and the
RHS results in:

ou\? v\ 2 ow\? _0vdu Ow Ou Ow v
@)+ () +(5)

GuN L (V) 4 (QB) 4 o0n0u | p0wlu
oz 3y 5z) + +

|
Vb= O0x Oy Ox 0z Oy 0z

P

ou\? [(Ov\? [Ow\? _BvOu _Owdu  Owdv
2 —_— PR —_— — —— I — — e
Vb= p{(ax) +<8y) +<8z> +28m8y+28x32+28y82}

The pressure, P, satisfies Poisson’s Equation driven by products of the
spatial derivatives of the velocity. This is different than the common
Bernoulli Equations because here the low can be unsteady and rotational.
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The Vorticity equation

vorticity = w = curl V=vxV

Start with the Navier Stokes equation:

vV oL . 1 .
v +(V-V)V = -=VP 4+ ViV
ot p

Take the curl of this equation, term by term:

Q(,%+(V-V)’CU+(W°V)V=VV21U

Dw

P . ¥ 2
5 (w- V)V +vViw

The first term on the right hand side is the rotation and stretching of the
vorticity by the non-uniform velocity field.
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Inviscid Fluid Mechanics, Euler’s Equation

Set the viscosity, 1 and the kinematic viscosity, v to zero. Apply these
“settings” to the Navier Stokes Equation.

DV 8V - . 1
= = 3 (V- = =2
B = B +(V-V) pVP

Ou Ju Ou Oou 10P
U+ VUVt W = =

ot fx 9y 0z  pox

ov Ov Oov ov 10P
wwtUug vt W =

ot Oox Oy 0z p Oy
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Bernoulli Theorems for Inviscid Flow

Theorem 1 - Irrotational Flow

Vector Identity

(VW) = SV(7P) ~ 7 x (V x V) = SV(7P) -V x @
Lo £

For Irrotational Flow, V =V¢ and VxV =0

0 o, 00 B
5V +VH = V(5 +H) =0
o¢

~ The function f(t) can be absorbed into ¢ by letting ¢ = ¢' + f} f(t)dt and

V=vV4¢.
b7 so, im0

&zﬁ o¢'
ot ot
Finally rename ¢ as ¢.

9¢
—67+H 0

Remember that the total pressure, Pr = P — pgz.

o Pr |
6t+ (V) +7+gz—0
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Theorem 2 - Steady Flow

ov - - 1
a‘i—(V'V)V—-—;VP
av¢+§v(1v|)—V><w+;vp_o
2V<;>+VH—17><w—o
o _

Thus, for steady flow:
Vxw=VH

Streamlines and vortex lines are perpendicular to VH.
Along either a streamline or a vortex line, H is a constant. So on any one
of these lines,

1, - P 15 P
H= §(V)2 + re —2—(V)2 + 7T +gz = c?nstant

If the flow is both steady and irrotational, H is the same everywhere
because VH = 0.

16
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Vorticity Dynamics and Kelvin’s Circulation Theorem

Circulation =I" = fv-drz /Sw- ds

DV 1 .
— = -—-VP+vV*V
Dy pV +v
Identity for an incompressible fluid: VWV =-Vxw
=il = —lVP —VvVxw
Dt p

Following a closed material curve,

dT DV 11—
- = -ﬁ-dr_—f;vp-dr—uf(va)-dr
= —Vf(wa)-dr

Kelvin’s Circulation Theorem

In an inviscid fluid, — =0
dt

r(t,) rt,)

pathlines

Corollary: In an inviscid fluid with no circulation (such as starting from
rest) the circulation remains zero.

17
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Practical Implication

In a high Reynolds number streaming flow, fluid which has not passed close
to a boundary or a free surface has negligible vorticity.

Therefore, in high Reynolds number streaming flows, vorticity is limited
to boundary layers, separated zones, and wakes.

Concept of Vortex Lines

—__vortexlines ~ ___—
\ /

S —

This line represents the vorticity in
this area which is the circulation
around its

boundary

Each line represents circulation around an area which is the same
as the vorticity inside the area.

w=curl‘7=VxY7

Therefore: divio =V -w =0

The vortex field is solenoidal. Vortex lines are continuous. They can have
curves and turns,but they cannot have ends in the fluid.

13
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Potential Flows and Mostly Potential Flows

For an irrotational fluidV x V = 0

This means that there exists a velocity potential, ¢, such that,

V=vVe¢

For an incompressible fluid V - V=0

Thus, V - (V) =0

Vip=0

For a completely potential flow, the velocity potential satisfies Laplace’s
equation.

For an incompressible flow that is “nearly” irrotational except in bound-
ary layers and wakes, the flow outside these boundary layers and wakes
is approximately described by a velocity potential that satisfies Laplace’s
equation.

21
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Green Functions, Green’s Theorem and Boundary Integral Equations

The following development is for three-dimensional flows. The development is
similar for two-dimensional flows except that two dimensional source functions
are involved and the dimensionality of some integrals and associated constants
are different.

Green’s Theorem

If ¢ and v both satisfy Laplace’s equation (V3¢ =0, V%) = 0), then:
/1 -
S on

Green Functions A three-dimensional (£, 7, () space is considered with a “sink” at
location (z,y, z). The ”sink” has the velocity potential 1/,

1
=62+ (y—n)?+ (2= )2

where: 7 = /(z — £)2 + (y — )2 + (2 — ()2

sor —parlas = [ [ [, [6v* - yo6] av =0

Vs

T

Importantly, V21, = 0 both for the differentiations done in (£,7, () space as well
as for the differentiations done in (z,y, z) space. The following development can
be formulated either way and we will choose to differentiate over (£, 7, ().

A Green Function, G is:

G = 'lbs(x,y, Z, f, n, C) + 'l)br(x, Y, =z, §) 1, C)

where, V2¢, = 0 in the fluid domain, and (z,y, 2) is called the point P.

~LUID

22
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If P is outside the fluid domain, the bracketed terms on the right hand side in
Green’s Theorem are zero. However, if P is inside the fluid domain, V23 # 0 at
P. Then, if P is enclosed by a small sphere of radius €, which is excluded from the
fluid domain, Green’s Theorem applies in the modified fluid domain. However,
now the integrals include an integral about the small sphere.

P

ORBIECT FLOID

oG 0¢
-//S-i-sphere[ on ’3—] dsey¢ =0

oG -1
//Sphere ¢%ds = —¢[P(z,v, z)]—E—Q— dme = 4ngp[P(x,y, x)]

//S [¢8_G - Ga¢] dsg ¢ = —4mo[P(z,y, 2)]

If P(z,y, z) is on the boundary, the integral is not defined. However, if we replace
the real boundary by one which has an infinitesmal hemisphere syrrounding P,
the Green Function integral is zero because the functions have no singularities in
the revised fluid domain.

n
P
r r=g
~LyIo -
g __d
dﬂ dr\

oG ¢
//S+hemzsphere [ on Ga ] ds¢ne =0

oG -1
[ fromisphere 8045 = =91P (2,9, 2)) 5 2me = 2m6{P(z, v, 2)]

// [Cﬁ— -G } ds¢pc = f47r¢[P(x,y, z)]

23
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Putting the preceding parts together, if a closed fluid domain of surface S is
considered with 7 being the outward normal vector (out of the fluid) and ¥ is
taken as G’ with proper exclusion of the singular point of G when (z, y, z) is inside
the domain or on its boundary,

0 (z,y, z) outside S
// [Cb— —G=— } dS = ¢ 2m¢(z,y,z) (z,y,2z)on S
_47T¢($a Y, ZC) (517, Yy, Z) inside S

The integral is over the closed area in (£, 7, (). When the singular point is on the
surface, an infinitesimally small circle surrounding the singular point is excluded
from the integral.

24



Example of method of solution

FMmRagoe£r

Generate integral equation on surface of an object in a uniform flow.

Suppose uniform flow onto an object is known

%g is known.
&=-Uz+¢

Boundary condition: &~ = 0,
~Ui-i+%=0, £=Ui-n

//S [gz%zq - GU%-ﬁr: o

[ f;0% s +2mg = [ [ GUi-ds

Right hand side is known in integral equation for ¢ on boundary.

Solve for values of ¢ on boundary (panel methods).
Then ¢ and %ﬁ are known on boundary.

Green’s Theorem then gives ¢ in all space.

25
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AT ST

Interpretation of Boundary Integral Equation
in terms of source and Dipole Layers

// {—1—8—¢G——1—¢ Qg} IS — 0 (z,y,z) outside S

S | 4w On 4" On | #(z,y,z) (z,y,z) inside S
“Inside S” means inside the fluid and outside “S” means outside the fluid.
G is the potential of a ”unit sink” and -0g/0n is the potential of a unit
dipole.

The Green’s Theorem integrals are integrals of sink distributions per unit
area of (1/4m)0¢/0On over the object and of dipole distributions of strength

per unit area of ¢/4m over the object. ¢
The sinks 4 ¢
2N

Consider the effect of a unit sink.

£V, 1 1 1
¢p=-, Vo=, flux = —4mr? = 47

2
Now, look at the small patch of area A on the surface:

V.
B+S SinK PC?'{'C'-L)

} B-Vs

B is the effect of the integrals on the remainder of the object. Call the
sink strength per unit area o. Total sink Strength on the patch is cA.

Net influx, based on the velocities is 2AV.
2AV, = 4o A 2V, = 4no

26



2V; is the jump in normal velocity. This must equal the normal velocity,
O¢/0On in the fluid at the boundary since V' = 0 inside the object.

%*47r J“i%
on g 47w On

Now consider an infinitesmal dipole patch of strength u

- ey wm  em =

=y U = /a/(

T,
¢ pemaie e
~+++ t d-—: _‘/é('/’( £ VCIGCH‘Y

Inside the infinistemally thin dipole layer of thickness ¢,

_Armp

YT ¢ in fluid ~ Pinside object = 4TH

since:  Pipside object = 0»

1
Pin fluid = 47K B = Egbin fluid

27



Kelvin-Neumann Problem
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The Kelvin—Neumann Problem

oG

= ar //sl+52+s3 [ on b_n—] ds

¢ is the perturbation potential (does not include —Uz).

The integral over S;, which is the part of the ship hull below the waterline
is of the same form as a Green’s theorem or “panel method” integral for
any finite size body, except here the top is open.

¢ and G decay with distance from the ship fast enough for the integral
over S3 to vanish.

The integral over S,, which is the free surface external to the ship is
special. We consider it here and call it ¢s.

¢2 = 477//52[ o - —}dxdy

Since n is a unit vector in the z direction on the mean free surface,

ch 47r//52[ oz —]dxdy

On the mean free surface, %‘f = —U{g—i‘g and we choose G (the Kelvin-
Neumann Green function) such that it satisfies the same boundary con-
dition, ¢ = -L-2¢

' 9z T g 0%

Then, applying these boundary conditions, ¢, becomes,

102, a%s 892G
—“57//52[ a7 —“}d dy

oG
8_1: - 5;} dx dy

1 U?
- —E_g—-//sz Ox

29



Now, the integral over z can be done. The contributions at * = +o00 vanish
so the result is:

2 2
1U ¢ Qng 1U aft[G%_ aa}dy

¢2= 4r g fore[ or oz T 4r g “or oz

4 g

The curve of the waterline is called C, with the part forward of the max-
imum beam called Cf and the part aft of this is called C,. Consider the
integrals taken along C in the counterclockwise direction. Then, dy is
positive on the forebody (Cf) and negative on the afterbody (Cy).

by = 1 U? [GQ?— BG]dy

4r g Ox 3

If v is the vector in the horizontal plane that is perpendicular to the wa-
terline and pointed out of the fluid into the ship, and df is the differential
of arc length along C, along the waterline dy = —v,d¢, so,

1 U? Op oG
— o L | 65 - 950] 45 - s oG5 — 650 et

Now, consider a potential function, ¢’ defined in the region bounded by 5
and S,;. In other words, ¢’ is some function of space such that V2¢' =
in the region where it is defined outside the actual fluid. The boundary

condition we impose on ¢’ on Sy is the same as the one we impose on ¢ on
: r__ a9 U
Sy. On S; we impose ¢’ = ¢. ﬁ_—gg—fg— on S

In the fluid region,

B oy ,0G
_77/ /(Sl+s4) {G&? - 577] ds

n’ = —n pointed into the fluid on 57 and n’ is a unit vector in the z
direction on Sy.

Call the contribution to ¢’ from the integral on Sy by ¢).
,0G 1 U? 8% | ,0°G
— = —— — — d
b= 47r//54[ 0z }dd 47rg//54_66x2 ¢8x2 d:z:y'

g AU L8 0G
= | f 3 (O - 052 e

30
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Carrying out the integral over = gives,

, 1 U2 o  ,0G 1 U2 o8¢  ,0G
L fm[ B0 5;;]‘1 iy aft[Gﬁ—x_ a—x]
, 1 U? 6¢’ ,0G 1 U? 8(15’

%= "y Jo [$‘¢ ]y g [a—x‘¢ ]

agb’ ,0G 1 U2 8¢’ ,0G
47r//31[ an’ ]dS’ 47rg [%—(b }

102, [.,0¢ OG
47r/fSI[G—+¢ }dSqLZ%— [Ga—qﬁ }I/xdf

To this, we add the equation for ¢ derived before:
1 U? oy ,0G
L p 2 de — -
= 4r -//51 [ on ¢ ] 5 4T g [Gﬁx 83:] vpdl

The sum is:

(9¢ 10J0) 1U op O
0= 3] 6 |G+ 58] a5 - 5 .6 |0 - vt

[—? + —3—%} is the source (actually it is a sink) strength o.

The normal derivative of Zl;qb jumps at the interface by the source strength,
o. The tangential derivative of ¢ is continuous across the interface because
¢ is continuous. —‘é jumps across the interface by the jump in the normal
derivative times n;r Therefore,

¢://SIG0dS—U?2/CGonzVI,d€

31



The Kelvin—Neumann Green Function

The Kelvin Neumann Green Function, G*(z, y, z) is the velocity potential
for a source located at (a,b, c) and moving at speed U and which satisfies
the linearized free surface boundary condition:

g
G .(z,v,0) + vG* =0, v=15;
This function is:
1 1
G*(z,y,2) = —=+—+
T ™
qu /2 oo k219 cos[k(z — a) cos 0] cos[k(y — b) sin ]
— d
m J0 07{) kcos? 0 — v dk +

/2 2
qu /0 2 guiate)sectd sin[v(z — a) sec 6] cos[u(y — b) sin O sec? §] sec? Hd6
where: |

P=@-a’+@y-b’+(z=0c?  ri=(z-af+(y—b)"+(z+c)

32



Source Only and Dipole Only Distributions

HYPOTHETICAL REAL
FLUID FLUID
DOMAIN DOMAIN
n
R 9 __9
"= on  On’

¢ is the velocity potential in the fluid.

¢ is a function that satisfies V2¢' = 0 in the region inside the object.

For a field point in the fluid domain, the following equations apply:

¢=$//G dS——//¢—dS

47r//G dS———//¢————dS

:i}{//G 4//¢_d5

o=ge ) [0 Gntam) 453 [ 69 g

33

¢ (X, 3,2) |

Lok s~



Suppose ¢’ is chosen as the harmonic function whose values on S are the
same as ¢. The hypothetical interior low would have the same tangential
velocity on the object as the real outer flow. Then:

-L/fe (0¢ 3¢’) a5

This is a representation for ¢ in terms of surface sources only.

This representation does not apply to lifting ﬂows since they have wakes
across which the potential jumps.

Now consider the case for which ¢ is chosen such that on S, ‘%g = —%%:.

The normal velocity is continuous across the surface for this case. Then:

¢—~—//¢ #) ——ds

This is a distribution of dipoles on the object surface S.

LYY LY
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Green’s Theorem in Two Dimensions

For two dimensional flow, the source potential is In 7 and the Green function
becomes:

Gz, y,&,m) =Inr+ ¢ (z,y,6,m)  where: V3, =0

FLOID

The analysis proceeds exactly the same as in the 3D case. When a point
P = (z,y), which is the local origin for In r, is outside the fluid domain,

-

When the point P is inside the fluid domain, Green’s Theorem is valid in a
domain in which the point P is excluded by a small circle, circle € surrounding

it since V2 # 0 at P. 2

| oG ¢ 0G 0¢
Then. -— Lirdee [055"’: — 57] ds + /:9 [d)‘a—n - G%} ds = 0
oG 0
Here: — | [gbg - a—f—} ds = —2n¢(P)

0 (x,y) outside S
Therefore: /s [gb%g - G-g—-ﬂ ds =3 m¢(x,y) (xz,y)on S
n n 2nd(z,y) (z,y) inside S

35
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Sometimes, the two-dimensional Green function is taken as:

G(z,y,&m) = —Inr+ ¥ (2,9,€,7) where: V2, =0

Then,
8G _0¢ 0 (z,y) outside S
/s [ on Ga_] ds=1{ —m¢(z,y) (z,y)onS
" " —2n¢(z,y) (@,y) inside S

36
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Force on a Vortex

— N ~
e C N
/ \
\
\/ o M 1
\ /
n=—icosh — ksind
' r
_——%smﬁ w,,-—%cosé’
9
=P U——-——Slnﬁ) +(—£—cos€) ~U?
2 27r
p| TU.. I \?
P = 5 { sin @ + (27rr) }

Fp = Pnds
2 pF r
— —-/ o ( Usinf + E) (—-z cos — ksin 0) rdf
27 pUF pUP
= / = =
0 o2mr 2
Momentum influx = M;, Uy, =iU -n = —U cosf

Fy = M, = p/ fw,Usyr d6 = ——k%—r—

Fiotat = Fp + Fpr = —kpUT

37



Lift on a Vortex in a Cylinder

When a vortex is in a uniform stream, to determine the lift force both the pressure
force and the momentum influx into a circular cylinder must be considered.

If the vortex is in a flow whose streamlines form a cylinder around it, there is no
momentum influx so the pressure force is the complete force.

A closed circle in a stream can be represented by a dipole.

The velocity potential of a 2D dipole is ¢4 = A

-z _
z2422°

For the flow to make a circle of radius equal to 1 in a stream of speed U, A = U.
the z— and z—directed speeds on the circle of radius 1 due to the dipole are:

ug = U(2* — %) = U(sin® @ — cos® §) = —U cos 20
wyg = —2Uzx = —2U sinf cos 8 = —U sin 20

The speeds obn the circle due to the vortex are:

A r
Uy = —%smé’ w, = %cose

The pressure on the circle is:

P r. 2 : r ? 2
P = —= <U—-Ucos29———sm9) +<—Us1n26’+—cos9) -U
2 27 2
1'\ 2
= P U2+(——) ——2U2cos20—Esin@%—Esin@cos%—-gcosé?sin%
2 21 T Vit T

38



FrM&vMy

The vertical force, F, is:

F = /02”Pn-1}d9 _ /02” _Psin0df

Ul ror
F, = P / (——sin20+sin2900529—sin00050sin20) df
2r Jo
_pUF%(_-z_l 2_1-2)
= o /0 sin” 0 2cos 20 2sm 20 do
_ B_U_F<_ _E_E)__
= r \TTg g =AUl

39
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Example: Design of 2D Airfoil Mean Line using Dipoles and Vortices

1 1
P = -pU? — 5,0(U+u)2 ~ —pUu

y 2
n
o~ ))
X \\
g=0 © g=1 =®

E=2x/c z=cf dr = cd§ n=y/c

Design Condition: Pyop = —1.00U%€(1—€)  Phogpom = 1-0pU%(1 —€)

u = 1.0U£(1 — &) up = —1.0U£(1 - €)

¢~ [ udz' = c/(f ud¢ = 1.0Uc/0£(£ — £2)d¢ = 1.0Uc (%2 - %?)
2 ¢3
o, = —1.0Uc (%— - %—)
¢t(€ - ].) = %UC ¢b(£ = 1) = —lé—O'UC (¢t -— ¢b)§:1 = %QUC
: g ¢ 1.0
[Dipole Strength)¢ ) = 1 = 2.0Uc (5 - 3) Pwake = ?U c

G=lnr=Tn[(@ )"+ (y )" = 10|z — 20" + (y ~ 5]
&) G
on/)e By only Oy

40
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Consider the upper surface:

(%) . _aG _ Y—Y
on t B 8yo B (:1: - m0)2 + (y - yo)z
_ 1 e Y—Y%
¢($7 y) = 7r/0 N(J"O) (z — wo)z + (y— yo)zdm"

8¢ 1 e (2 — 262+ (¥ — ¥o)? — 2(y — o)?

By b P T e e
. 0o (T — 2o)2 + (Y — Y0)* — 2(y — ¥,)? .
) T G

e —z0)2 + (y — yo)?°

:_/ :1:0 — da:o-i— ,u(c/ (——1—de

T — T,)?

[gﬂ Y=Yo=0

The above analysis has an incorrect non-integrable singularity at x = z, be-
cause a careful limiting analysis requiring V2¢ = 0 was not done.

However, another, and simpler, approach exists.

A dipole represents a jump in the potential. Another way to achieve a potential
jump is a vortex distribution.

[ A A A A A A
DA WA WA VAV WA WA,

In length dzx,, vortex strength =vy(z,)dz,. y(x,) is vorticity /unit-length.

u(z) = U + %)- wp(z) =U — 2(212 v(z) = ug(x) — up(x)

v(z) = —/OC ——Mdazo

2m(z — z,)

. v(x) o 7/(50)
ope == - )
where: 7'(§,) = 7(2,50)

41
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Now, we can solve for the mean line shape of the airfoil

For an arbitrarily defined pressure distribution, the integral for the slope can
be done numerically. Here, for the particular pressure distribution given, we
will solve for the slope analytically.

Then the shape is found by integrating the slope, s(£). This will be done
numerically.

7€) = 2.06(1.0 — €)

’7,(60) d€ _ _1-0 /1 60(1 - go)
° 0

=~ G -5 ee, %o

s =—{5-0-0fenz2+1)}

Non-Dimensional Height = 7(¢) = [* s(&,)dg,
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C:\MATLAB6pl\work\foiltd.m Page 1
July 11, 2002 9:24:51 aM

format compact

x = 0 : 0.01 : 1.0;

fac = -1.0/pi;

s = fac.* (0.5 - (1.0-%x).*{ x.*log((1.0~x+eps)./(x+eps))+1.0));
h(l) = 0.0;

for 1 = 2:101

h(i) = h(i-1) + (x(i)-x(i-1))*0.5*(s(i)+s(i-1));
end;

fid = fopen('ht.dat','w');

for m = 1:101

fprintf (fid, '%$6.2f %7.4f %7.4f\n’',x(m), s{(m), h(m));
end;

fclose (£id);

plot(x, s)

yvlabel ('Slope')

xlabel {'\x1i')

pause

plot (x,h)

ylabel ('Camber"')
Xlabel ('\xi')
title('Camber vs \xi')
axis ([0 1 0 0.0661])
grid
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foiltd
format compact
x=0 :0.01:1.0;

fac = -1.0/p1;
s = fac.*(0.5 - (1.0-x).*( x.*1og((1.0-x+eps)./(x+eps))+1.0));
h(1l) = 0.0;

for i = 2:101

h(;) = h(1-1) + (x()-xG-1)*0.5*(s(i)+s(i-1));
end;

fid = fopen('ht.dat', 'w');

for m = 1:101

fpgintf(fid,'%G.Zf %7.4Ff %7.4f\n',x(m), s(m), h(m));
end;

fclose (fid);

plot(x,s)

ylabel('Slope")

xlabel('"\xi")

pause +

plot(x,h)
ylabel('Camber')
xTabeT('\xi")
title('Camber vs \xi')
axis([0 1 0 0.066])
grid



foiltda
% version of foiltd with one less Toop for computing speed improvement

x =0 :0. 01 : 1.0;
fac = -1.0/pi
s = fac.*(0. 5 - (1.0-x).*( x.*10g((1.0-x+eps) ./ (x+eps))+1.0));
h(l) = O 0;
for i 101
h(é) h(1 D + (x@)-xG-1))*0.5*(s(i)+s(i-1));
end;
f1d = fopen('hta.dat’,'w');
= [x;s;h];

fpr1ntf(f1d '%6 . Zf %7.4f %7.4f\n',q);
fclose (f1d),

plot(x,s)

y1abe1('S]ope')

xTlabel("\xi")

pause

plot(x,h)

ylabel ('Ccamber')
xlabel("\xi") )
title('Camber vs \xi')
axis([0 1 0 0.066])
grid

50



foiltdb
% This version uses even more vectorization and no "for" loops at all.

% Version of foiltd with one less loop for computing speed improvement

i 8/01 : 1.0;
; *(0.5 - (1.0-x).*( x.*1og((1.0-x+eps)./(x+eps))+1.0));

= 0.0;

[0 d1ff(x)], % This is [0 x(2)-x(1) x(3)-x(2) ...]

[0 sgl end-1) + s(2:end) ] % This is [0 s(2)+s(1) s(3)+s(2)
= 0.5*xd .* ss;

= cumsum(h); % Each e]ement is the sum of the ones bvefore it.
fi d fopen( htb.dat','w');

?pr1ntf(f1d '%6.2f %7.4f %7.4f\n',q);
fclose (f1d)

plot(x,s)

ylabel('Slope')

xTabel('\xi")

pause

plot(x,h)

ylabel ('Ccamber"')
xTabel("\xi")
title('Camber vs \xi')
axis([0 1 0 0.066])
grid

I
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C:\MATLAB6pl\work\foiltda.m Page 1
July 11, 2002 9:23:45 AM

% Version of foiltd with one less loop for computing speed improvement

x=0 :0.01 : 1.0;
fac = -1.0/pi;

s = fac.*(0.5 - (1.0-x).*( x.*log{(1l.0-x+eps) ./ (x+eps))+1.0));
h(l) = 0.0;

for i = 2:101

h(i) = h(i-1) + (x(i)-x(i-1))*0.5*(s(i)+s(i-1));

end;
fid = fopen('hta.dat','w');
q = [x;s;h];

fprintf (fid, '%6.2f %7.4f %7.4f\n',q);
fclose (fid):

plot(x,s)

vlabel ('Slope"')

xlabel ('\xi"')

pause

plot(x,h)

ylabel ('Camber"')
xlabel ("\xi")
title('Camber vs \xi')
axis ([0 1 0 0.0661])
grid
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A:\foiltdb.m Page 1

July 11, 2002 9:35:36 AM
% This version uses even more vectorization and no "for" loops at all.
% Version of foiltd with one less loop for computing speed improvement

x =0 =:0.01 : 1.0;
fac = -1.0/pi;
s = fac.*(0.5 - (1.0-x).*( x.*log((1.0-x+eps) ./ (x+eps))+1.0));
h(l) = 0.0;
xd = [0 diff(x)]; % This is [0 x(2)-x(1) x(3)-x(2) ...]
[0 s(l:end-1) + s(2:end) ] % This is [0 s(2)+s(l) s(3)+s(2)
= 0.5*xd .* gs;
h = cumsum(h); % Each element is the sum of the ones bvefore it.
fid = fopen('htb.dat', 'w');
g = [x;s;h];
fprintf (£id, '%$6.2f %7.4f %7.4f\n',q);
fclose (fid);
plot(x, s)
vlabel('Slope')
xlabel ('\xi'")
pause

g
i

plot (x,h)
ylabel ( ' Camber')
xlabel ("\xi")
title('Camber vs \xi')
axis([0 1 0 0.0661])
grid
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Some Useful Results from Calculus
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Derivation of Gauss’ Theorem

Let f(z,y, 2) be a differentiable scalar function of (z,y, 2).

By the divergence theorem,
[ V-fidv= [ fi-fids= [ n.fds

» 0
v i=2

/Viv-ﬁdvzfvig—i—dv:[g%nxfds

Similarly,
- s ~Of A
/V]v fadv = /V] Egdv - /Sjnyfds

[V Fdv= [,k ay= [ kn.fas

Now, add the last three equations together,

/VVfdv:/Sﬁfds



// 3 qfs8ext ()

Example of Use of Gauss Theorem:
Froude Krylov Surge Force on a Ship

j N /lj‘—/

P = pgAe ™ cos(kz — wt) F= / /S —piidS

F=%-//—Pﬁds=—2///v13dv
=—// /V v = pgAk [ [ / ? sin(kz — wt)dV

F, =~ pgAk [ [ ﬂ/ (1 — kz) sin(kz — wt)dV
= pgAk /L [ / /s éction dydz] sin(kz — wt)dx

—pgAk? /L [ / /s ection 2 dy dz] sin(kz — wt)dx

F, = pgAk /L S(z) sin(kz — wt)dx — pgAk? /L 2eq S(z) sin(kz — wt)dx
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Example with Given Ship Shape

x= -LJ2 , x=L/2
|_—— x —
\2V/
2W (L 2 0
V=1 (5‘””) (D-2)

For this shape:

2WD (L )2
- 5~

S =31

Using these values:

k 2
F, = %pgAk%D— (1 — —ZQ) {coswt [—i—g sin % + %cos %]

Dt L? 4\ . kL +2L kL]
sinwt || =~ — 5| sin 5 +-5 cos

——Fz— = gk:L (1 — @2) {coswt [— 2 sin @ 4 —}-—cos @]
pgAW D 3 4 L (kL)? 2 kL 2
—sinwt [(i — ) sink—L— + 2 cos kL} }
kL (kL)3 2 (kL)? 2
[___Eﬁ_] = gkL (1_@2){{___2_Sin@+ico,sk_@r
pgAW D | hax 3 4 L (kL)? 2 kL 2

(L ey k2 kL1
kL~ (kL)) %" 2 T(kL)2 % 2
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C:\MATLAB6pl\work\gaussexp.m Page 1
July 11, 2002 9:39:08 AM

% m-file script for gaussexp
tt = 2.0/3.0;
DoL = 0.06;
DoLf = DoL/4.;
m= 1:1:200;
kL, = 0.25.*m;
kLi = 1.0 ./ KkL;
sn = sin(kL ./ 2.0);
cs = cos{(kL ./ 2.0);
fnd = tt .* kL .*(1.0 - kL. .* DoLf) .* ((( -2 ./ (kL .~ 2)) .* sn + KLi .* ¢
cs) .~ 2 ...
+ ( ( kLi -4.0 .* (kLi .”3)) .* sn + (2.0 ./ (kL."2)).* cs) .72) .~ 0.5;
g = [kL;fnd]l;
fid = fopen('surge.dat',K6 'w');
fprintf (fid, '%$8.3£f, %9.4f\n',q);
fclose (fid);
plot (kL, £nd)
xlabel ('kL')
ylabel ('Surge Force Amplitude / [ \rtho g A WD ]"')
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The Transport Theorem

Let f(x,t) be a differentiable scalar function of x and ¢.

Consider the integral,

I(t) :///V(t) f(x,8)dV

f is changing with time and V is changing with time. The normal com-
ponent of the velocity of any point on the surface, S of V is called U,.

=1L ge ] s =[] [ {5+ (10))av

Note that if U is the fluid velocity, the surface S is a material surface
and the Transport Theorem is simply the integral form of the Substantial
Derivative.

60
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Pressure Forces and Moments on an Object

F://prnds M://pr(rxn)dS

Now use the (unsteady) Bernoulli equation:

——p//[ + v¢ W)]nds

:_p//[ + v¢ v¢](rxn)ds

The following results from applying Gauss, Transport and divergence
theorems and boundary conditions:

Fz—-p%//sbqbndS—p//Sc [-g—i—)ng—n%qu-qu} ds

M:—pdt// ¢ (rxn)dS — p// rx[ ¢V¢—n Vo - ngﬁ} ds
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An Application Using Complex Numbers
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Example of Programming with Complex Numbers

Conformal Mapping of a Circle into an Airfoil

2D Flow: ¢ is velocity potential, ¢ is stream function.

op_w 0 %

“_ax"ay ”_ay " Or
Complex Numbers

z=z+1y S=q¢+ 10 — =u—w

Simple Example

/ X
u=Ucosa v=Usina
¢=Uzcosa+ Uysina ¥ =Uycosa -~ Uzrsina

S=¢+ip=Uzcosa+Uysina+iUycosa —iUzsina

Q?
oz

=Ucosa—iUsina=u—1v

0P 109 P -
= za— = —tUsina+Ucosa =u — 1w

o) idy 0y
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Now we map a circle in the z-plane to an airfoil in the {-plane.
Streamlines in z-plane map into streamlines in (-plane.

The circle is a streamline in the z-plane and the airfoil is a streamline in
the (-plane.

dd d<I>/alz_(u—iv)z
(u—iv)e =3¢ d¢C/dz ~  d(/dz

The Karman-Trefftz mapping function is:

(z+a)* + (z — a)*
G+ap— (- ap

(= Aa

A and a are real numbers and A > 1.

d¢ — 42 2 (z—a) (z4a)*!

dz {z+a) - (z— )
For large z, -
= /\(z +ar L)+ (2 —ad L)
(22 + arzA"1 + .. )—(z'\—a)\z’\ 1+.)
= a2z + ... -
T lgt .. 2T

Far field flow in z-plane is equal to far field flow in (-plane.

d(/dz = 0 at z = a and at z = —a. If either of these points are in the flow
field, u — v must equal zero there to avoid infinite velocity in (-plane.

Approach

Locate circle so that 2z = —a is inside it.

Locate circle so that z = a is on circle and u — v there is zero. z = a
maps into the trailing edge of the airfoil and since d¢ /dz = 0 there it can
be sharp. .

64



P e e
"
> o/i( a @{: ?;
E==—
[; ;_244 ) L-1J L .)(z; ) ,41 L L1421

Flow around a circle with zero circulation. The center of the circle is located
at z = —.3,y = 0.4. The circle passes through z = a = 1.0. The flow angle of attack is
10 degrees.

The inflow angle is a = 10 degrees, the circle radius is r, = v/ 1.32 + 0.4% =
1.3602 and the flow is:

2
u=Ucosa—-U (Z—f) cos(26 — a)

2
v:Usina—U(—;) sin(20 — a)

This flow is not zero at z = a.
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To make the flow zero at z = a add circulation T

[ = dnr.Usin(-3 - a) B = sin—! ¥
. r

Then:
re\? r
u=Ucosa—U|—] cos(20 —a) — —sind
T 2nr

N—_——’

: e\? . r
v:Usma—~U(—) sin(20 — o) + —— cos 6
T : 27r

N

DI

I

U

7 Flow around a circle with circulation. The center of ihe circle is located at
z = —.3,y = 0.4. The circle passes through £ = a = 1.0. Note that the rear stagnation

point has moved to = = a.
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P— Py =

-25
The circle maps into an airfoil shape. The included angle , 7 (in degrees)

at the tail is:
The Pressure Distribution
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Procedure to Compute Pressure Coeflicient

1. Make a sequence of points on the circle.
2. Determine value of z for each point.

3. Use complex number programming to determine the value of z and
d(/dz for each point.

4. (u—iv)e = (u—v),/%.
5. ¢ = (u — )¢ (u+ W),
6. C,=1—(q/U)
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cpl
% cpl in matlab

a=1.0;
alpha=0.1745;
1ambda—1 8611;
XC = -0 3;

amma——7 779695;
pr=180./pi;
rc = sqrt((1.0-xc).A2 + yc A2);
fid = fopen('cpm. dat",'w "y
degv = (1:1:360);
angv—degv ./dpr;
XC + ( rc .* cos(angv));
yv yc + ( rc .* sin(angv));
zv XV + i¥*yv;
zetav-1ambda*a*((zv + a) .A Tambda + (zv-a) .Alambda) ./ .
((zv+a) .A lambda - (zv -a) .A lambda);
Tm = lambda - 1.0;

dzetadzv = 4.0 * lambda A2 * a A2 * (zv-a) .A Im .*(zv+a) .Alm ./ ...

(((zv + a) * Tambda - (zv -a) .A lambda) .A 2);

uv = (UU*cos(alpha)) - UU*cos(2.0 L angv - a1pha) -
(gamma / (2.0*pi*rc)) * sin(angv);

w = (UU * sin(alpha)) - UU*sin(2.0*angv - alpha) + ...
(gamma/(2.0*pi*rc)) .* cos(angv);

WZ = uv -i*vv;

wzeta = wz ./(dzetadzv + eps);

q = wzeta. *(conJ(wzeta)),

cp=1.0 - q / (UU .A2);

cpm = -Cp;

for m = 1:360

fprintf(fid, '%7.3Ff %7.3f %7.3f %7.3f %7.3f %7.3f %7.3f\n',

rea1(zetav(m)), imag(zetav(m)), cpm(m), real(zv(m)), 1mag(zv(m)),...

d, real(wz(m)),imag(wz(m)));
en
fc]ose(f1d) ;

Page 1
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Root Finding
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Root Finding

Suppose you wish to find the wave number, k, of gravity water waves with a
frequency, f, of 0.2 Hz. in water that is 5 meters deep. The circular frequency
of 0.2 Hz. waves is w = 2w f = 1.2566 radians/second. The dispersion relation

for gravity water waves is:
kgtanh kh = w?

g is the acceleration of gravity, 9.81 m/s? and h is the water depth, 5 m.
This equation can be written as:

kgtanhkh — w? =0

If we write an equation: y(k) = kgtanhkh — w?,

The problem at hand is the same as asking: ”What is the value of k such that
y(k) = 0?7 The value of a quantity that makes another equal to zero is called a
root and the question above is called Root Finding.

0 01 02 03 04 05
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Bisection Method
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(4 F-Cont

% biseck program to find k given omega
% using the bisection root finding method
om = 1.2566;
g = 9.81;
h=25.0;
k1 =10.0;
k2 = 0.5;
k3 = 0.25;
y = k3*g*tanh(k3*h) - om”2;
form =1:50
y = k3*g*tanh(k3*h) - om”"2;
if (y*y < 1.0e-8);
break
end
if(y >= 0.0);
k2 = k3;
k3 = 0.5*(k1+k2);
elseif (y <= 0.0) ;
k1 =k3;
k3 = 0.5*(k1 + k2);
else;
fprintf(1,'there was no root')
end;
end ;
fprintf(1,' k = %8.4\n' k3);
fprintf(1," Number of iterations =%3.0f\n’,m);

>> biseck

k= 0.2073

Number of iterations = 15
>>
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y=4+3x-6X°+4x°-x*

1.00000  4.000000000 0.00000 4.000000000
2.00000  2.000000000 -1.00000 -10.000000000
3.00000 -14.000000000 -0.50000 0.437500000
2.50000 -2.562500000 -0.75000  -3.628906250
2.25000  0.308593750 -0.62500 -1.347900391
2.37500 -0.949462891 -0.56250  -0.397964478
2.31250 -0.280044556 -0.53125 0.033507347
2.28130  0.023423625 -0.54688  -0.178792423
2.29690 -0.125854491 -0.53906 -0.071706616
2.28910 -0.050608813 -0.53516  -0.018951368
2.28520 -0.013441856 -0.53320 0.007398979
2.28325  0.005028455 -0.53418  -0.005762632
2.28423 -0.004244654 -0.53369 0.000821562
2.28374  0.000394274 -0.53345 0.004044001
2.28398 -0.001877260 -0.53381  -0.000790267
2.28386 -0.000741351 -0.53363 0.001627324
2.28380 -0.000173503 -0.53354 0.002835777
2.28377  0.000110395 -0.53368 0.000955863
2.28379 -0.000078868 -0.53374 0.000150016
2.28378  0.000015764 -0.53378  -0.000387271

-0.563376  -0.000118622

-0.53375 0.000015699
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Newton’s Method for Finding Roots of y(x)

The approach taken in Newton’s method is to take an estimate of the location
of a root of y(z) and then improve upon it. Thus, it is iterative, starting with
a“guess” for x with each successive iteration being the result of the last iteration.
The basic formula for each iteration is:

y
dx

where v, ; =
A T=ci_1

o o1 02 03 04 05
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Review of Matrix Algebra

An m x n matrix (m rows, n columns) ia said to be of order m x n and
is written symbolically as:

aip ai2 - - - Qp

azy a2 - - - Q2
A:_@_:

| Om1 Am2 - © ° OGmn |

Each a;; represents a numerical value. If the a;;’s are real numbers, the
matrix is called a real matriz. If the a;;’s are complex numbers, the matrix
is called a complez matriz.

The matrix is called square if m = n. Matrices A and B are called equal
if a;; = b;; for all i and j and they have the same number of rows and the
same number of columns.

If A and B are both order m X mn matrices, the matrix C = A + B is
defined by the relations:
Cij = aij + by

The matrix D = A is defined by the relations:

d;j = yag

An important relation is the the matriz product, of two matrices A (m x n)
and B (n x p) which is denoted by C = AB whose elements are defined
by:

n
cii = Y. aixbyj, i=1,2,---,m, j=1,2---p
k=1

When A and B are square and of the same order, both AB and BA are
defined, but except under special circumstances, AB # BA.
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An m X 1 matrix (m rows, 1 column) is called a column vector or a vector
and is written symbolically as:
o ]
L2

Each z; represents a numerical value.

The standard form for a set of linear equations is:
Ax =D

where A is an m X n matrix called the coefficient matriz and x is an
unknown vector of length n. b is a known vector of length n.

Let a; denote the §% column of A. Then the set of equations can be
written as:
ria;+T0as+ - - - +za,=b

The vectors a;, j = 1,2,...,n are linearly dependent if there is a set of
numbers 1, T2, ...T,, With at least one z; being non zero such that:

r1a; + 229 + - - - —{—a:nan:O

In this instance, at least one a; is a linear combination of the remaining
aj’s.

The vectors a;, j = 1,2,...,n are linearly independent if they are not
linearly dependent.

If each of the m linear equations is independent then there is an exact
solution if m = n. If m > n, there are more equations than unknowns
and there is no exact solution. Rather, there is an approximate solution
for x which is usually chosen to achieve minimum sum of the squared
errors from each equation.
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Consider a square n X n matrix, A. It is called the identity matriz of order
n, ¥, ( or simply I) if

L fi=]
¥ 10, otherwise

This is often written as: aij = 0ij

If B is an n X p matrix,

I.B=B and BI,=B

The j** column of I is called the j* unit vector and denoted by e;. Any
n-vector b can be written as:

b = Z bje]'
=1

J

The j%* column of a matrix B is given by Be;. Therefore, if C = AB, the
§™ column of C, called c; is obtained as:

Cj = Cej = (AB)e] = A(Be]) = AbJ

A collection V of linearly independent vectors in R™ ( this means that the
vectors are 1 X n) is called a basis for R™ if every n-vector can be written
as a linear combination of the vectors in V. Obviously, the columns of I,,,
which are the e;’s form a basis for R". However, this is not the only set V'
of basis vectors. Any basis in R" contains exactly n vectors.

THEOREM: The linear system Ax = b has a unique solution if and only
if the only solution to Ax =0is x =0.

THEOREM: If the homogeneous linear system Ax = 0 has fewer equations
than unknowns, it has nonzero (non trivial) solutions.

THEOREM: A is an m X n matrix. If the linear system Ax =b has a
solution for every m-vector b, then m < n.
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Consider a square n X n matrix, A. If there is a square n X n matrix,
B such that AB =1, B is called the inverse of A and denoted by A~L.
If A has an inverse A is called nonsingular and if it does not have an
inverse, A is called singular.

Fact: If A and B are invertible, then, (AB)™! = B-1 A~!

Suppose there is a linear system of equations Ax = b where A is invert-
ible and b is a known vector and x is an unknown vector to be determined.
Pre-multiplying the equation by A~! gives:

A'Ax=A"1b
x=A"1b

Thus, if the inverse of A is determined, the solution to the system of
equations can be obtained by straightforward matrix multiplication. This
is not a numerically efficient way to solve sets of linear equations, but it
demonstrates theoretically that a solution exists of the coefficient matriz
is nonsingular. '

The principle of obtaining the inverse of a matrix can be demonstrated
as follows: An n X n matrix A exists and the goal to to determine its
inverse B = A~! whose j column is called b;. Ab; = e; is a system
of n linear equations for the n elements of b;. Finding A~! in this way
requires solving a set of n equations for each of the n column vectors b;.

A more computationally efficient way to find the inverse of a nonsingular
matrix will be shown subsequently.
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Determinant of a Matrix

A matrix A has a determinant which is denoted by det(A) or |[A|. The determi-
nant of a matrix plays a large theoretical role in linear algebra and a practical
role in determining the inverse of a matrix. The determinant is defined as the
sum of all signed elementary products from the matrix. An elementary product
is the product of n elements all of which are from different rows and different
columns. The sign is + if the number of inversions of the indices is even and
— if the number of invertsions is odd.

n .
J— 1
—— _— J -
|Al Y. (=1)aijakas ... ang
Tkl q=1

where j,k,[,...,q are all different and 2 is the number of inversions in the se-
quence 3,7,1,...,q.

A recursive definition of | A| which includes a “prescription” of how to calculate
it is as follows:
1. f Ris a 1 x 1 matrix, R = [r], det(R) = 7.

2. A;; is the submatriz of A obtained by deleting the i** row and ;' column
of A. The minor m;; (associated with the matrix A) is the determinant
of Aij

my; = det(A,j)

3. The cofactor ¢;; is defined by ¢;; = (—1)"" my;

det(A) = ) a;jci; foranyi=1,2,..,n, or
j=1
det(A) = > aijc;; forany j=1,2,..,n
i=1

e Adding a constant times one row of a matrix to another row does not
change the determinant.

e Adding a constant times one column of a matrix to another column does
not does not change the determinant.
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Transpose of a Matrix

The transpose of a matrix A is called AT and is obtained by making each row
of AT the corresponding column of A. For example, if we define C = AT,

Cij = Qji

Calculating the Inverse of a Matrix

Consider a matrix A. It’s cofactors are c;;. The matrix C is the matrix whose
tj element is c;;.

The matrix C7 is called the adjugate or the adjoint of A and is denoted by
adj(A).
The inverse a A is given by:

o adj(A)
det(A)

Cramer’s Rule

Consider the system of linear equations, Ax =b. Define A7 as the matrix
formed by replacing the j** column of A by the column vector b.

Cramer’s Rule is: T;=
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Matrix Norms

First we define vector norms N (x) of the vector x in n dimensional space..
A vector norm has the following properties:

1. N(x) > 0 for all n-vectors x.
2. N(x) =0 if and only if x = 0.
3. N(ax) = |a|N(x) for all real a and n-vectors x.

4. N(x+y) < N(x)+ N(y) for all n-vectors x and y.

Norms are denoted by || - ||.

n n
Il =3 |z, lIx[l2 = || > 27, ||zl|co = max ||
= =1 1<i<n

An operator norm N(A) of a real valued n x n matrix A is a real valued
function having the following properties:

1. N(A) > 0.

N(A) = 0if and only if all the elements of A are zero.
N(aA) = |a| N(A) for all real a.

N(A+B) <N(A)+ N(B).

N(AB) < N(A)N(B).

AN S

There are a number of equivalent definitions for the v-norm of A, N(A) =
lJA[ly- One of them is:

For all n-vectors z such that ||z||, <1,

All, = max ||Az||,
IAll, = pax 1Az
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The Condition Number of A Matrix

Consider a set of linear equations, Ax = b which is to be solved numeri-
cally. The exact solution is x = A~'b. How sensitive is the accuracy of the
solution to numerical errors? After obtaining an approximate numerical
solution X, we can always compute the residual r as:

r=b—Ax

We would like to find some relationship between the computable residual
r and the error e = x — X.

r=b— A% = Ax — Ak = A(x — %) = Ae

al
1A

Since e[| < [|All]lell, llel]| =

llell < 1 il
Il = TATT AT 1Bl

Then, since ||x|| < ||A~Y]|[Ibl]

Now we use: [le[| < [|A™"||[lr]| and |[|b]| < [|A]|||x]]

el 1 el
These give: ——= < ||A]|||A~
) = AIIA gy
1
Hence: ||I‘|| “e“ HAHHA 1” “r“

TATTTAT1bl] = Tl = [bl|
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TATTAT bl = Ty = IATIA g

The condition number of an n X n matrix, A, with respect to the operator
norm || - || is called «(A) and defined by:

K(A) = ||A]] [JA7Y]

The condition number multiplied by the norm of the relative residual is an
upper bound on the norm of the relative error. 1/x(A) multiplied by the
relative residual is a lower bound on the norm of the relative error.

For a large condition number, the relative residual is a poor indicator of
the relative error. For k = 1, the relative residual is a good measure of the
relative error.
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GAUSSIAN ELIMINATION

Triangular Systems

upxy + uppxz + o+ Upn-1xn-1 + ¥1n¥n = N

u22X2 + o + uz’n_lxn__l + u2nxn — f2
back substitution

Up—-t.n—1Xn—1 + Un—-1,nXn = Jn-1

UnnXn = fn

Solve the following upper triangular system by using back substitution.
2x1 = Sx3+x3 = 3
3x2 — X3 = 7

4x3 = 8

Gaussian Elimination. This general solution technique is based on the following
basic properties of linear systems:

1.

Multiplying an equation by a constant does not alter the solution to the system.
Replacing an equation by a linear combination of itself with some other equations
(one or more) in the system does not alter the solution to the system.
Interchanging the order of equations in the system does not affect the solution to
the system.

These Elementary Row Operations are used to form an equivalent
triangular system of equations from an original system of equations
to be solved.
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3x) —x; +2x3= -3
X1+ x2+x3=-4

2+ x2—x3=-3

Use 1° equation to eliminate z; from 2"¢ and 3¢ equation

3x) — X2 +2x3= -3

4 +1 3
—x3 + =x3 = —
3*2 T 37

s 1. 1
—Xy — — —_— -
3*2 7 37

Use 2™ equation to eliminate from 3™ equation

3x; —x2+2x3= -3

1
§x2+§x3=—3
SHRL
237
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Gaussian Elimination Operation Count for n Equations

The number of multiplications and divisions is called M

The number of additions and subtractions is called A.

nd n? 5n
A=
3+2 6
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Errors in Numerical Solutions of Sets of Linear Equations

When terms that are subtracted from each other in a solution method have nearly the same
magnitude, computational round off errors can result in large relative errors in the solution.

Computational errors are generally reduced if each equation is scaled as follows:

- - - ~

aiy aiz - - - Q4aip I by
az Gz - - - G T2 by
_anl aro - -+ - a'nn_ _xmj _bm_
Let s; =max|a;l, 1=1,2,...,n
J

Divide the i** row of the A and b matrices by s;.
This is called scaling.

In a Gaussian Elimination the element that is used to eliminate its column in
the equations that do not contain it is called the pivot element

Errors in numerical solutions are generally reduced if pairs of equations are
interchanged so the magnitude of the pivot element is the largest one possible.

Scaled Partial Pivoting Rule

Both of the above error-reduction steps can be incorporated in what is called
the Scaled Partial Pivoting Rule.

1. Start by determining s; for each row as explained above.

2. At the start of the k’;th elimination step, scan the £%* column of A and
determine the integer p such that:

3. If p # k, then interchange rows p and k.

This procedure removes the need to do the scaling explicitly which can be
another source of round off error.
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Solution of Linear Equations by LU Decomposition

Equation to Solve: Ax=Db

A is presumed to be non-singular. Suppose we can decompose A into A = LU
where L is lower triangular with diagonal elements equal to 1 and U is upper
triangular. Then the solution is straightforward.

LUx=b
Define: y = Ux Ly =b’
1 0 0 (5 bl
Lyy 1 O0||ly|=]0b
L3y Lg 1| |y b3
y1="b
Loyy1 +y2 = by Y2 = by — Loyby
L3iy1 + Lazys + y3 = bs y3 = bz — Lsiy1 — Loy
Ux=y
U1 U2 U3 x ()
0 wop uz || z2| =W
0 0 wugs||x3 Y3
3 = y3/ U3zs

T2 = (yz - U23$3)/U22

T = (y1 — U12T2 — U13333)/u11
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Procedure for Factorization of A

A is a nonsingular n x n matrix. A = LU. As an example, suppose:

3 -1 3
A= 6 0 9
-12 0 -10
From the second row we subtract mgl) = 2 times the first row.
From the third row we subtract mgl) = -4 times the first row.
The result is”:
3 -1 3
U=|0 23
0 —4 2
From the third row we subtract mg‘?) = —2 times the second row.

The result is the desired upper triangular matrix:

U =

OO W
O N =
00 W W

The lower triangular matrix with 1’s on the diagonal is given by the formula
lz’j = m(]) for 7 > ]

i

1 00
L= 2 10
-4 =21

This results in A = LU
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Curve Fitting and Interpolation
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Polynomial Approximation to a Function

100 —— — -
80 |
60|

Suppose y = f(z) where f(z) is an unknown function. However, Suppose we
have N + 1 pairs of values (zg, yx), k= 0,2,..., N. An approximation to f(z) is
the N order polynomial, py(z) that passes through the N + 1 points. This can
be very useful. For example derivatives or integrals of f can be approximated
by the corresponding derivatives or integrals of py. Also, py is an interpolating
function for f.

One obvious way to determine the required NV + 1 coefficients, ¢; for py is to
write the NV + 1 equations:

N
> xhe; = yg, k=0,1,...,N
i=0

This is equivalent to the matrix equation, X,c=y

There is another way to determine an approximating (interpolating) polynomial
that does not require solution of a matrix equation. To introduce it, suppose we
seek the polynomial that passes through just two points (zg,yg), (z1,%1)- It is
easy to show that the polynomial is given by:

Pl(ﬁfi):<x_xl>yo+(x—x0)y1

g — I 1 — Xy

p is the linear combination of two order-1 polynomials L and can be written as:

pi(z) = Lio(z)yo + L11(z)n
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The polynomials Ly x(z) are called Lagrange Polynomials. The polynomial rep-
resentation can be extended to the case of N 4 1 points as:

pn(z) = % Ly f(zk)
k=0

The Lagrange Polynomials, Ly y(x) are polynomials of order N and have the
following properties: :

_J 1 forj=k
Lv(i) = { 0 forj#k

The polynomials that have these properties are:

N 7 — o
Lyk(z) = 11 .

§=0,5#k Tk = Tj
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Numerical Differentiation

Numerical Differentiation is used when:

1. A functional form is so complicated that it is more convenient to do
numerical integration,

2. when we have a table of values of [z;, f(z;)] and we wish to find df /dz
for some given value(s) of z.

Examples of situations for which derivatives are needed include:

oy . . . . A _ @ . QQ
1. Quantities given in terms of derivatives: v = %%, u = 2.
2. Mathematical procedures requiring derivatives:

e A function ¥y = f(z) is to be approximated by § = f(z) and f
contains constants to be determined which minimize the error in the
fit of the function to N points at z;. Error = ©¥ [ flzi)— f (:rz)]

e Finding the roots of y = f(z). In other words, find the values of =
such that f(z) = 0.

Two principal methods for obtaining numerical estimates of f'(z;) when we
have a set (table) of pairs of values [z;, f(z;) = fi], 1= 1,2,..., N are:

1. Develop relatively simple formulae that provide estimates of the deriva-
tive in terms of values of f; and z;,

2. Determine an analytic function g(z) which is a good approximation to
f(z) and differentiate g(z) analytically.

We will consider the first method here. The second is in the category of
functional estimation or approximation.
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Numerical Differentiation
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Finite Difference Differentiation

o+ h)— flz,
Formal Definition of the Derivative f'(z,) = ’lg% flzo+ })L f(zo)

If we simply let h be “small”’, we have an approximation to the derivative,

flag o ft 1= 1

If h > 0 this is a forward-difference formula and
if h < 0 this is a backward-difference formula.

It has a unique relation to the Taylor series for f(z, + h)

Flmo+h) = £@) + hf' (@) + SH 1), €€ (207 + )

i) = Lot B TE) | By

\}

Our approximation to the derivative is obtained by dropping the last term
which introduces an error of O(h). The smaller the value of h, the smaller the
mathematical error. However, very small h results in numerical subtraction of
two “nearly identical” numbers so it introduces round-off error.

A centered difference formula for the derivative is:

o) = Lt 1) = Fla =)

The error in this formula is O(h?)
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Sometimes the points are not equally spaced so numerical implementation of
the centered difference formula is impossible. Consider the case of y = f(z)
with values at specific points known as sketched below:

For all interior points (z3 to zg) in the figure, interpolation of derivatives at the
center of adjacent points can be used to generate the equivalent of a centered
difference formula at each of the x-points, even when the distnces, L, are not
equal.

The resulting formula is:

dm — Gm-1 + 1
2qm gm—1 2

f/(xm) = YUm

m dm—1

1
where: ¢, = §(Lm+1 + L)

For estiating the derivatives at the end points, extapolation can be used from
the numerical derivative half way between the two endmost points using the
forward or backward difference formula and the the derivative at the nearest
interior point given by the above formula.
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Sometimes values of a function, y, are given at unequally spaced points around
the periphery of a plane curve as sketched below.

L3 Lo

Ly “—/

L4

The lengths L are arc lengths (s) between points on the curve and values of
y are known at points ( 1, 2, ..., N) on the curve. To obtain the numerical
approximation of the tangential derivative 3/(s) at points 1,2,3, .... N, equation
(1) can be used. However, for point m = 1, special values for some of the y’s
and some of the L’s must be used. In particular y,,_1 = yy and L,,,_1 = Ly.

Likewise for for point m = N, y,,.1 = ¥1 and L1 = L.
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To estimate the error in Simpson’s rule, the function over four successive points
can be expanded in a Taylor series up to order 3. With equally spaced points,
the error in the integral from the cubic term vanishes and the dominant term
in the error is proportional to the fourth derivative d*f/dz*. For equally spaced
points with h = Az, the total error, Er takes the form:

P> __ hncldff(m)
T=790 5 dzt

7; is some value of z in the 7*h interval.

114



T 9bed

((SI‘IT ‘I ‘,U\JS 6% 46°6%  45°6%, ‘T)FuLady
‘(,sa|ny¥ S,,uosduLs pue |epLozadedl ‘Je|nBURIDDY WOJ4 S|eJHIIUI, ‘, U\ m&..meucTLQm
: 0°¢ L%WH" ST

‘ :pus
FCZPDA+H (THDAR0 b+ DA + SI = sI
1Z-UIZIT = ) Jog
ECQUWALS 0 +(T)AxS0 + 3Dy =
S((MAHIT) Y = uI

‘{pus
fONDA + 31 =3I
COPDA + JT = JT
T-u:ig =3 J0J
‘0 = SI.
0 =3I
10 = JI
‘Mz - (VDz =Yy
‘pus
(T'.4%, ‘pra)duedsy = ONA
C(T' 3%, ‘pLddFuedst = ()2
TUIT = ) Jo4
:(T'.p%, ‘PL$)JuUeDS) = U
£(,d, ' LLF)uddoy = pLy
£(,S,*, ioweu 3L} 1nduL u23u3l,)induL = |LJ

SINIOd Q3DVdS A1TVND3 HLIM NOILYYOIUINI TVDIYIWNN Od OL 1dIUDS%
JuLwnu

115



T °bed

dasdLys

0TS'9
6059
L0S°9
059
00S°9
06t °9
04%°9
ovy°9
00¥°9
0SE’'9
0S¢°9
00T "9
006" S
006°S
000°S
000"V
0000

oOMNoNOoONOWNONONOLNOWNOD
ONINNONINNONINNONILNGDG
—HOOOO™HrHHHANNNANMMNMNMMN T

N~

116



3.5

2.5

1.5

0.5

117




WY 85:9T:6
1 obeg

<<

008L9 €T GLEPG EC 000€EL"2C

saTny s,uosdwuts pue Teptozadex] ‘xeTnbueiosy woxI sTeibsiur
. 3xX30oesdTys :sweu aT7TII anduT I93uUjg
AUTWNU <<

200Z '0¢ I990320.

MOPUTM PURPUMOD FYTLYR

118



-3 R T
Non oy s

Numerical Integration

119



hTz

Numerical Integration

1. Used to integrate a function that we do not know how it integrate by quadra-
ture. For example, suppose we seek I = [53 exp(vz + z3dz

2. Used when we want to determine [° f(z)dz and we have a set of pairs of
values of [z, f(z)]

100
E 80
3]

@ 60
<
s 4
S 20
N

00 10 2‘0 30 40 50 6(0 70 80 90 100

x (m)
One approach, which we will not consider in detail here, is to fit a polynomial
to the integrand and then to integrate the polynomial analytically.

The approach we follow here is to consider integration rules which provide a nu-
merical approximation to the integral in terms of discrete values of the integrand
for a set of values of x.

Rectangular Rule approximates the function by a set of rectangles and esti-
mates the integral as the sum of the areas of the rectangles.

/ Z Tiv1 — ;) f(2:)

f(x)
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Trapezoidal Rule _
The trapezoidal rule fits a trapezoid to each successive pair of values of [z, f(z)]
and estimates the integral as the sum of the areas of the trapezoids.

Ax)
X X, X3
X
Tn n-1 1
L, f@de = X (o1 = @) 51 @on + (1)
fx;., 1)

0. 0.5(F(x) + f(x;, ;)

Xi Xis1

{‘* Xiv = X; { X

By expanding f(z) in each interval as a Taylor series we find the error in the
approximate integral, Er is given by:

where 7; is some value of x in the 7** interval. Since the number of terms in the
sum is proportional to 1/h, smaller intervals result in less error.

f(x)
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Estimate 3 - Usual Trapezoidal Rule

4
—

Y y

y=flr)=a+br+ca®+---

(st eI

2 2

=3¢ (~5) +/ ()]

E _ I O(h*
rror—ﬁf (B) + O(h%)
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Simpson’s Rule

Simpson’s rule fits a parabola ( 2" order polynomial) to each interval between
[2;, f(z;)] and [z;42, f(zit2)] and estimates the integral as the sum of the areas
under the parabolas.

Simpson’s rule

(a+ b)/2 X

For Simpson’s Rule, the intervals [z;,; — z;] and [z;9 — 2;41] must be equal and
the x-distance interval length is called Az. For three values of z;; a,a + Ax,b
the integral is

Az

[ f@)dz ~ SEf(@) + 4 (@ + Aa) + £(B)

Simpson’s Rule requires that there be an even number of intervals which means
that there are an odd number of data pairs [z;, f(z;)] Then the integral is ap-
proximated by the sum of the areas under the approximating parabolas as

n—2

i=1,35,... 3

For the usual case of equal spacing, Az, of all the z;’s, Simpson’s Rule can be
expressed as:

/: f(z)dz =~ % [f(azl) + f(zn) + 4 nz_jl flz:) +2 nf f(z:)

1=2,4,6,... i=3,5,7,...
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Numerical Integration of Differential equations

40
30
20

>
10
0

-10

dy/dx = f(x,y)

o 1 2 3 4 5 6 7 8 9 10

Consider the differential equation: P f(z,y) subject toy(a) =b
x

The condition y(a) = b is called an initial condition. a and b are known numbers.

The approach to integrate the differential equation numerically is to start at
z = a where we know the solution, y = b. Then we move to x = a + Az. The
solution at that point is: y = a + fu.Ax, where fg,e is the average value of g—g
over the interval from a to a + Az. Then we proceed in the same way to obtain
y(a + 2Az). The accuracy of the numerical solution depends of the accuracy of
the estimate of f,,.. The various ways of making this estimate are called rules or
methods. We will index the points at which y is determined by 4 so the computed
values are 1y, y1, y2, ... at values of x: zg, T1, T2, .... The simplest method is Euler’s

Method.
/

128



Euler’s Method In Euler’s method, to estimate y;11, fave is approximated by
its value at (z;,y;) or its value at (z;11,y;) The former case is called the forward
Euler Method and the latter case is called the backward Euler Method.

For the forward FEuler Method: Yir1 = i+ f (@i, yi) (Tiv1—14)
Expanding y in a Taylor series about z, gives:

(:L‘ — $0)2 "

y(z) = y(zo) + (z — 20)y'(z0) + 5 y"(zg) + ...

The error,e, for one step in the solution by the Euler Method can be obtained
from the first omitted term in the above Taylor series:

(z — x)2 d?y
2 dxz?

€ =

The meaning of the error depends on the value of z for which %% is evaluated.
There is one point in the interval for which the computed error is exact. However,
the location of that point is not known. If we take the absolute value of the
maximum value of g—i% in the interval, the result is an upper bound on the error.
€ is called the local error for the interval. The total error for the entire interval is
called the global error. The sum of the values of € for all the intervals is an upper
bound on the global error. For demonstration purposes, if we have a differential
equation that can be solved analytically, the exact global error can be calculated.
It can be shown that the global error diminishes as the step (interval) size, Az,
is made smaller.

Modified Euler’s Method

The forward Euler method uses the derivative at the initial point of the interval.
The backward Euler method uses the derivative close to the end point of the
interval. A numerical solution with improved accuracy is obtained by using the
average of the derivative at the initially computed end points.

Lit1 — X4

5 {V' (@i, vi) + V[zit1, i + (@ip1 — ) ¥ (@0, vi)]}

Yir1 R Y; +
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Modified Euler’s Method (continued)

i+1

For each successive interval, the steps are:

AN ol o

. Evaluate the slope [y'(z;,y:)] at the start of the interval.

Estimate y;,; at the end of the interval using Euler’s Method.
Evaluate the slope, ¥'[z; 1, yi+(zi41 — )y (zi, ¥:)], at the end of the interval.
Calculate the average of the two slopes,y/, . from steps 1 and 3.

Calculate a revised value of y;,; using the average slope,
Yir1 = Yi + (Tir1 — Ti)Ype-
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Fourth Order Runge Kutta Method

y S
h( Sq+ 255+ 2S5+ $4)/6 s,

\
//

X X+ h/2  Xth=x,, X

The fourth order Runge Kutta method estimates the average value of f = % in
an interval of length h in terms of values of f at four locations in (z,y) space. If
the initial point of the interval is (x;,v;), one derivative is evaluated there, one
is at £ = z; + h and two are at x = z; + h/2, for two different values of y. If %
depends only on x and not on y, the two intermediate values of f are the same.

The four slopes are:

s1 = f(zi, i)

so = f(x; + 0.5h,y; + 0.5hs,)
S3 = f(IL'z + O5h, Y; + 05h$2)

sq = f(zi + h,yi + hs3)
Then the value of y at the end of the interval is estimated as:
h
Yie1 = Yi + 6(81 + 289 + 253 + 54)
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Predictor-Corrector Methods

Two difficulties with high order Runge Kutta methods are the computation time
required to compute several values of the derivative at each time step and the
exact error is unknown. Predictor-corrector methods allow fewer computations
if the number of corrector steps is limited and allow iterations of the corrector
step converging to a very accurate solution if the required computation time is
available.

The approach with a predictor-corrector method involves two steps. The first is
a prediction step using any integration method and the second is the correction
step which improves upon the prediction. The process is explained here using
the simplest rules: the Forward Euler Method for the prediction step and the
trapezoidal rule for the correction step. The equation to be solved is: % =
f(z,y). Consider the interval from index ¢ to index 741 with z;;; —x; = h. The
prediction step is:
Yit1,0 = Yix + Afin

The second subscript on the left hand side, 0 indicates that there have been zero
correction steps (or trials). The second subscripts, *, on the right hand side
means that the subscripted quantities are for the final step; in this case for the
it" integration step.

Now we use the trapezoidal rule to correct the estimate of ;.

h
Yit1,1 = Yix T 5 [fi,* + fi+1,0]

The rightmost term can be evaluated since we know y;y; ¢ from the previous
prediction step. We can refine the estimate, using the value of y;.; from the
prior correction step.

h
Yi+1,) = Yix + 2 [f%* + fi+1,j—1]

This process can be continued until y converges. The converged result is the exact
solution to the numerical problem as posed, but is not necessarily the solution to
the actual continuous mathematics solution. In this case, the numerical problem
is based on the average derivative over the interval being the average of its value
at the two ends. This is not exactly correct for differential equations in general.
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Higher Order Differential Equations

2

d
Consider the equation: d_:vz + fi(=, y)é + folz,y)y = g(x,y)
d
Let: & _ z

dz

Then: j—; = —filz,y) z — folz,v) vy + 9(z,y)

When we use an integration rule, at each step it is applied to the two equations
above and everything else proceeds as it does for a first order differential equation.

The same approach can be used for equations of higher order. For example:
d? d?

d
L+ by + AnTE + fey)y = g(@y)

Make the following definitions:
dy _
dr
dz d%y

dr — dz?

z

Then: CCZZ—:,‘) = —fg(fl?,y)'w — f1($,y) Z = fO(x7y)y + g(ﬂ?,y)

In this case, the integration rule is applied to three equations at each step.
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Review and Extension

Simple Example

2

d d
Suppose: d—tg—l—f(y, t)— Y

- T 90y = h(y,?)

d*y dy
2 = —f(y, )dt (y,t)y + h(y,?)
dy
Let: t) = =
et: q(y,1) 7
dq

—f(y,t)a—9g(y,t)y + h(y,t)
Consider the simplest 1ntegrat10n rule: Forward Euler Integration

a(t +6t) = q(t) + [~ F(y(2),£) a(t) — g(y(),8) y(2) + h(y(2), 8)] bt
y(t +6t) = y(t) +q(t) 6t

Slightly More Complicated Example

y(z,t)
ot?

Oy(z,t)
ot

+ f(z,y,t) + g(z,y,t)y(z,t)m = h(z,y,1)

Follow the above procedure for each (fixed) value of z.

y(z,t) Oy(z,t)
T - _f(xay7 t>—a£—— - g(w,y,t) ) + h(l‘,y,t)
Let: q(z,y,t) = ayg’ ‘)
0q(z,y,1)

ot = —f(il?,y(:lf,t),t) Q(xay’t) - g(x,y,t) y(x>y:t) + h(a;)yat)

Now we do the numerical integration by the Euler Method. Any other method can also be used.
q(z,y, t+6t) = q(z,y,1) + [ f(z,y(z, 1), t) a(z, y(z, 1), 1) — g(z, y(z, 1), ) y(z, t) + h(z, y(z, 1), 1)] Ot

y(z,t+ dt) = y(z,t) + q(z,y,t) ot
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Some Examples and Numerical Errors
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PHYSICAL PROBLEM PHYSICAL MODEL

Simplifying Assumptions

Geometry (Navier Stokes Eqn)

Less Important Effects

Euler Equation
Linearity

Incompressibility

Laplace Equation

MATHEMATICAL MODEL
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Types of Numerical Hydrodynamics Problems

1. Evaluation of Mathematical Functions

2. Simulation

3. Direct Solution of Differential or Integral Equations

Example of Function Evaluation

5.0
2.5|
of r=2 + tanh (x-5)
25
=0 1 2 3 4 5 6 7 8 9 10

X
Consider a diffuser with circular crossections and radius vs length as shown.
Units are meters. The average velocity of an incompressible fluid across
the inlet at z = 0 is 5 m/s. Determine the average velocity across all cross

sections.

@ = 57[2 + tanh(—5)}°

Q _ Q
7r? 7|2 4+ tanh(z — 5)]?

‘/ave(w) =
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% MATLAB Program diffu
fname = input (' Type name for output file: ','s');
fid = fopen(fname,'w');
qg=5.0* pi * (2.0 + tanh(-5.0))"2;
x =0 0.2 : 10.0 ;
v=gq./ (pi * (2.0 + tanh(x-5.0)) .72);
for j = 1:51;
fprintf (£fid, "' $10.4f $10.4f \n', x(3), v(3)
end;

fclose(fid);

plot (x,v);

xXxlabel ('x (meters)');
ylabel( 'v {ave} (m/s)'");
axis ([0 10 O 10]);
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.0000
.2000
.4000
.6000
.8000
.0000
.2000
.4000
.6000
.8000
.0000
.2000
.4000
.6000
.8000
.0000
.2000
.4000
.6000
.8000
.0000
.2000
.4000
.6000
.8000
.0000
.2000
.4000
.6000
.8000
.0000
.2000
.4000
.6000
.8000
.0000
.2000
.4000
.6000
.8000
.0000
.2000
.4000
. 6000
.8000
.0000
.2000
.4000
. 6000
.8000
.0000

OO OO0 OO OO0 ODO0OO0ODOOO0ODOOO0OO0OOOCOOOORRFEFERPNNWWE & & B B DB D BB D BB BD DOl

.0000
.9996
. 9989
.9979
.9964
.9942
.9909
. 9860
.9787
.9679
.9518
.9280
.8929
.8415
.7668
.6596
.5085
.3008
.0251
.6762
.2608
.8019
.3366
.9054
.5390
.2502
.0357
.8829
.7769
.7046
.6557
.6228
.6007
.5859
.5759
.5692
.56438
.5618
.5597
.5584
.5575
.5569
.5565
.5562
.5560
.5559
.5558
.5558
. 5557
.5557
.5557
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(m/s)

10

Vave

Nnumet: ¢+ a.

X (meters)
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Example of Solution of Ordinary Differential Equation

Motion of a Sphere Due to Drag

—
dt
—>
d’z 1 dz\?
wEo o-peor(r-)
e D D 2pCd7rR |4 o
2
Ccll—f:u %:pg‘i]\?}R (V2—2uV+u2)

Discretize and use forward Euler Integration:

d
U1 = U; + (E?) ' At Tit1 = T; + ’U,iAt
Initial Conditions: zg=0 ug =0

142
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spheredg
% MATLAB program spheredg
fid = fopen('sphere.out’,'w');
rho = 1000.0;
cd = 1.0;
v =1.0;
r = 0.05;
m= 5.0;
fac = rho * cd *pi *r *r /(2.0 * m);
tt = 10.0;
dt = 0.01;

n = tt/dt + 1;

%initialize

t(1) = 0.0;
x(1) = 0.0;
u(l) = 0.0;
fpr1ntf(f1d '%15.7f  %15.7f %15.7f \n', t(1), x(1),
u());
for i=2:n;
= 1i-1;
t(i) = t(3) + dt;
x(i)= x(J) + u(3)*dt;
u(i) = u(j) + fac*(v¥v- 2.0* u(j)*v + u(q)*u( j))*dt;
gpr1ntf(f1d,'%15 Jf  %15.7F  %15.7fF \n',t(i),xG),ui));
end;
p]Ot(t,X,'—ﬂ,t,u,'——')
x1abel('Time (seconds)');
h=1egend( 'x (meters)' , 'u (meters/second)’ , 2);

Page 1
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I
— x (meters)
--- u (meters/second)

Time (seconds)
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.0000000
.0100000
.0200000
.0300000
.0400000
.0500000
.0600000
.0700000
.0800000
.0900000
.1000000
.1100000
.1200000
.1300000
.1400000
.1500000
.1600000
.1700000
.1800000
.1500000
.2000000
.2100000
.2200000
.2300000
.2400000
.2500000
.2600000
.2700000
.2800000
.2900000
.3000000
.3100000
.3200000
.3300000
.3400000
.3500000
.3600000
.3700000
.3800000
.3900000
.4000000
.4100000
.4200000
.4300000
.4400000
.4500000
.4600000
.4700000
.4800000
.4900000
.5000000
.5100000
.5200000
.5300000
.5400000
.5500000
.5600000
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X

.0000000
.0000000
.0000785
. 0002344
.0004664
.0007733
.0011539
.0016073
.0021323
.0027277
.0033926
.0041260
.0049268
.0057941
.0067269
.0077242
.0087852
.0099090
.0110946
.0123413
.0136481
.0150143
.0164391
.0179215
.0194610
.0210567
.0227079
.0244138
.0261737
.0279870
.0298529
.0317708
.0337399
.0357598
.0378296
.0399489
.0421169
.0443331
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.0489076
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. 0536679
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u

.0000000
.0078540
.0155851
.0231962
.0306900
.0380693
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.0524947
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.0664922
.0733364
.0800807
.0867271
.0932779
.0997350
.1061005
.1123762
.1185642
.1246662
.1306840
.1366193
.1424739
.1482493
.1539472
.1595691
.1651166
.1705911
.1759940
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.1865906
.1917871
.1969174
.2019828
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.2168014
.2216190
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.2310781
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.2403094
.2448422
.2493210
.2537469
.2581207
.2624434
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.2709390
.2751137
.2792406
.2833207
.2873548
.2913435
.2952877
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.6900000
.7000000

.7100000
.7200000

.7300000
.7400000
.7500000
.7600000

.7700000
.7800000

.7900000
.8000000

.8100000
.8200000
.8300000
.8400000
.8500000
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Example of Solution of Partial Differential Equation

Potential Stfeaming Flow about a Circular Cylinder

_> -_— —
, u-n=0
— ij+1
Vo > i-1,j ij i+1,] A
—> S
—> i:j'1
2 = 0
veh =0 u=1Iu + JVv

There is an equation at each grid point:

i1 — 2015 + diy1j N i -1 — 2055 + Pi i1

=0
52 s2

Boundary Condition far (many diameters) from the cylinder:

¢7’+ly] ¢Z;] — V ¢27.7+1 ¢'L] — O
s ? S
Boundary Condition on the cylinder:
¢z+1 Yi+lj — ¥ig ¢z,] cos 0 4 Pl g ¢z ]+1 QSm sin@ = 0
s s
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cylindrical coordinates

Equation at each grid point:

Git1,j — i1, + Gir1,j — 2055 + Gi1 + i1 — 2055 + Pij1
2rdr (dr)? r2df?

=0

Boundary Condition far (many diameters) from the cylinder:

Pij+1 — Pij Giv1 — Pij .
I =V, cosf v = —-V,sin0
Boundary Condition on the cylinder:
Bij+1 — Pij
2 7. —_ O
dr



Ni2me+n

Example of Discretized Integral Equation

Potential Streaming Flow about a Circular Cylinder Here we seek the per-
turbation velocity that exists in addition to the uniform flow of speed V.

Exterior flow is represented as a source distribution of strength o(6) on the
surface of the cylinder.

. 2r 7(0)[r — 7/(6)]
U(r) = o Rdf
") /O ZW'T—;'(H)I

Just outside the surface of the cylinder, U-7=-V,cosf

Now we can form the discretized approximate equation:

7irs Z 1)1 sy | %
i=1i#j 2m|rj — if? 2

= —V,cosb;
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Stability

When applying a numerical procedure to a problem in fluid mechanics, the
result can diverge. In other words, the process is unstable. Such instabilities
can be fundamentally fluid mechanical or they may come from inaccuracies
in the numerical procedure.

For example, suppose a process is governed by the differential equation:

d
E% — 3y with initial condition  y(0) = 1

We know that the solution to this equation is y = €% which diverges as t
increases. This is a fundamental instability in the process being modeled. A

proper numerical solution will capture this instability.

Now we explore a numerical instability using numerical values with three
decimal places. Consider the set of values, z, defined for non-negative integers

n by:
1 z"

Zn = ), oy de
A recursion relation for the z’s can be made as follows:
12"+ 5z ! 12" (2 +5) 1
ot S = [ e = [ S e =
1
Zn=——02Zp1
n
1

Forn=0, 7= — —dz=In(6) - In(5) = 0.182

z+5

1
Forn >0, z,=——52,1
n

z; = 1.000 — 5 x 0.182 = 0.090
22 = 0.500 — 5 x 0.090 = 0.050
z3 = 0.333 — 5 x 0.050 = 0.083
z4 = 0.250 — 5 x 0.083 = —0.165

The above negative value for z; must be wrong since the integrand is positive.
It comes from numerical instability associated with roundoff error.
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An alternative recursion relation is:

1 Z, 1
Zpn—1 = -5?—-5—-—02(;&-—27,)

This reduces the effect of the error by a factor of 5. We will start with an
approximation to 29 and use the recursion relation for successively smaller
values of n.

) 10
Approximate Equation: z;9 = /0 5—(—1——;1:_—0—2—)- ~ (.2 / (1-0.2z)dz = 0.015
x

z10 = 0.015

z9 = 0.2 (li — 0.015) = 0.017

1

28:02<§—0017):0.019
1

z7:02<§ 0019):0.021
1

z6=02(? 0021):0.024
1

z5:02<—6- 0024>:0029

24:02@ 0029):0034
1

z;;zOZ(Z 0034):0043
1

z2:02<§ 0043)=0058
|
1

2y = 0.2 (I ~ 0.088) =0.182

Note that the result for zj is cortrect even though an approximate value was
used for Z;p. This iteration scheme is stable.
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Sketch of an Object in a Uniform Stream

b=-Uzr+¢

Boundary Condition on Perturbation Potential

0P 8 -
Three Dimensional Flows
0 (z,y,2) outside S
// [qﬁ— — G } = "’27T¢(£C, Y, Z) (:Ea Y, Z) on S

—4np(z,y,2) (z,y,z) inside S

1 1
Covsntnd = T G- G0

where: 7 =/(z — €)2 + (y —0)* + (z — ()?

G can be taken as: G = %+H(a:, ¥,2,&,n,¢) where H is an analytic function
(V2H = 0 in both (z,y, z) and in (§,7,() coordinates. It is used sometimes
when a particular H makes the integrand zero on flow boundaries external

to an object, thereby removing the necessity of integrating over them.
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Interpretation of Green’s Theorem

Sketch of Streamlines from Sink and from Dipole

Sink Dipole
Sketch of Sink and Dipole Streamlines

The velocity potential inside the fluid domain and on object surface expressed
as distributions of sources (or sinks for the Green function we have chosen)
and dipoles on the surface of the object.

G(z,y, z,&,m,C) is the velocity potential at (z,y,z) due to a point sink of
unit strength at (£, 7, ()

A sheet of of sinks with strength o per unit area causes the normal velocity
to jump by 4mo when crossing the surface from inside the object out into the
fluid.

% is the velocity potential at (x,y, z) due to a point dipole of unit dipole

moment at (£,n,{) with the axis of the dipole normal to the object and
pointing out of the fluid and into the interior of the object.

A sheet of dipoles with strength p per unit area causes the velocity potential
to jump by —4mu when crossing the surface from inside the object out to the
fluid. That’s why the dipole moment per unit area needs to be ¢ to generate

a velocity potential of —47w¢ in the fluid just outside the surface and in the
fluid.
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Arrangement of the Integral Equation
e arrange the equation for ¢ in the form of an integral equation with
unknowns on the left and known quantities on the right.

e The equation will be applied on the surface of the object where the
boundary conditions specify part of the equation.

e Excluding an infinitesimal surface around the point (§,7,() = (z,y, 2)
from the region of integration makes the constant on the right hand side
of the equation equal to 27 instead of 4.

For problems where g—g is known on the fluid side of the surface, we write the
equation for the unknown ¢ with a known right hand side.

//¢—d5'§ng+27r¢x Y,z //G dSﬁnC

When we substitute Uz - n for %2 the integral equation for the unknown
velocity potential ¢ is:

/ </)——d5¢n<+27r¢(x y,2) = [ [[GU#-n(&n,¢) dSe
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Numerical Form of the Integral Equation

Sketch of an Object Surface Divided into Quadrilateral Panels

e A quadrilateral panel with four corners on the surface will not necessarily
be planar.

e The simplest approach is to use approximating planar panels with ¢
constant on each panel.

e For an approximating planar panel, j, place panel centroid, ¢; = (§;,7;, ;)
on the actual object surface and orient the panel such that its normal is
in the direction of the cross-product of the two diagonal vectors of the
non-planar panel.

e This leaves gaps between the panels which are sources of error. However,
the smaller the panels, the smaller the gaps. A less erroneous procedure
uses non-planar panels, but the integrations for the discretized equation
becomes more complicated.
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Making the Numerical Equations

e Write a separate equation for values of (z,y,z) at the centroid of each
panel.

e There are N centroids where ¢ will be calculated so there will be NV
equations.

e The calculation (field) points, which are the panel centroids will be la-
beled by the index i and the value of ¢ on the i*" panel is called ¢; These
are the unknowns.

e For each equation (one for each of the N valies of 7), the integrals on the
right hand side are done over each panel (j) individually and the results
are summed together.

g// #(&,m, C G ds{nc+27r¢1 ij = Z// GUU?’ nJ(§ YR C)dsﬁné
j=1

5ij:{1 lf?,:]‘

0 otherwise

The symbol G;; means the Green function with the field point at the centroid
of the i** panel and with the source point varying over all locations in the
j™ panel as the integration is carried out. Since, in the approximation being
used, ¢ is a constant,

N N R
Z QSJ //S dS{ﬂ{ + 271'(15] iy = z:l / /S G”UZ . nj(§,n, C) dS&JLC
j=1 j= j

Define:

/ /S 8n” dSe ¢ + 218 = Ay
and

N 2
Zl//s GiUv-n5(&,n,() dSepne = B
1= J

158



P2

For planar panels, n;(§,7, ¢) is a constant on each panel and we call it n; and
then Ut - (&, 7, () is a constant on each panel so that:

B; = g:l Ui-n [ /Sj Gij dSeny

The final set of equations for the N values of ¢ is:

N
> Aij¢; = B; equivalently A¢ =B
j=1
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Solution Steps

e Do the numerical integrals to generate the matrix A and the vector B
which are integrals of G and %ﬁ—.

e For each field point ¢ integrals must be done for all N values of j. .

e Once A and B are determined, solve the set of linear equations is solved
for ¢.

o When the number of panels is less than a few thousand, it is practical to
solve the equations by Gaussian Elimination, or an LU decomposition.

e The burden of carrying out these procedures is removed from the MAT-
LAB user by obtaining the entire solution for all the values of ¢ with
the MATLAB statement: ¢ = A\B.

e After ¢ and g% have been determined on the surface of the object the
numerical approximation to the left hand side of Green’s Theorem can
be used to compute ¢ at any point in the fluid.

e The usual goal of a panel method in fluid mechanics is to find the pressure
distribution on an object from which the forces and moments can be
computed. With inviscid fluid mechanics for which the panel method
was developed, the local pressure, P is given by Bernoulli’s equation:

0
P=p[- 20 VP g

p is the fluid density and g is the acceleration due to gravity.

The first term on the right hand side applies to time-dependent motion.
Although this has not been considered explicitely here, one can imagine an
object moving sinusoidally so that in a reference frame attached to the object
U is sinusoidal and the solution has time dependence. The third term is
simply the hydrostatic pressure. The most difficult term on the right hand
side to compute is generally the second. It is the square of the velocity at
the object surface.
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Two Dimensional Panel Methods

The development for two-dimensional flows is similar to the 3D case, except
that two dimensional source functions are involved and the dimensionality of
some integrals and associated constants are different.

Two dimensional flows are either mathematical abstractions with all flow
directions in a two dimensional plane or physical approximations for long
prismatic objects with an inflow that is perpendicular to the long axis.

Objects for which the Flow is Nearly Two-Dimensional

For the two-dimensional case, Green’s Theorem., is:
? )

PYe o0 0 (z,y) outside S
[, |65, — Gao| de=] ~mé(w,y) (zy)ons
" " —2n¢(z,y) (x,y) inside S

and the Green function is:

G(z,y,&n) = —Iny(z—€*+ (y—n)?) = —Ilnr
where: r = \/(z — €)% + (y — n)?

As in the 3D case, in 2D flows, sometimes the Green function is taken as
—Inr + h(z,y) where h is an analytic function which means % + g%% =
0. Green’s Theorem, still holds with this Green function. It is used for
problems with boundaries on which the integral in Green’s Theorem vanishes

to simplify the integrations that are necessary.
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For an incomming stream in the —x direction the total potential is:
® = —Uzx + ¢, the boundary condition for the perturbation potential, ¢ on

the surface of the vehicle is %2 = U¢-n on the object surface.

The integral equation for the unknown function, ¢(z, y) on the object surface,
having unknown quantities on the left and known quantities on the right hand
1s:

oG .
J,#Em 7 dley +md(z,y) = [ GUI-nde,
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Numerical Form of the Two Dimensional Integral equation

The 2D curve is divided into panels which become segments of a curve:

L3 L

Panelization of a Two Dimensional Object

e Each panel( actually a line) is defined by two vertices on the object
curve. Panel 1 extends from vertex 1 (labeled v; in the figure) to vertex
2, panel 2 extends from vertex 2 to vertex 3, etc.

e The centroids of each panel, are at the mid-points of the arc length of
each panel. For flat panels, straight lines are drawn between adjacent
vertices and the centroids, called ¢; are moved to the midpoints of each
straight line panel.

e The unit normal vector, n; on panel ¢, is a constant along the length of
the panel. The panels are defined by the (z,y) values of the two vertices
at the panel ends.

e For the simplest implementation the potential, ¢, is approximated as
being a constant on each panel.

With these approximations and definitions, the numerical form of the integral
equation is:

N an N o
7:___Zl¢j/Lj 8T;dfj+ﬂ'¢j5ij :J;UZ-HJ/LJ_GZ‘J'CM]'
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Analogous to the 3D case, we define:

Gy, L
/I/j 87’1,]- d€j+7r5ij:Aij
and
Ui | Gydt; =B
Ui - nj a4l = B;

J:

Again, the final set of equations for the N unknown values of ¢ is:

N
ZAZ]ng:BZ or A¢:B
j=1

Calculation of A4;; and B;

For a field point 7 located at the midpoint of the i'th panel we need to
determine for each panel j the value of A;; by integrating %ﬁ? over the j’th
panel. We also need to determine B; by summing up the terms in the equation
for B;. General purpose MATLAB m-functions for doing these integrals exist

and will be provided to students.
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Situations With the Generation of Lift

e If the object in a streaminf flow has a sharp trailing edge, it will usually

generate lift.

e The lift is related to circulation around the object so that ¢ jumps acorss
the trailing edge. This results in a “wake” across which the potential

jumps by the same amount as at the trailing edge.

e To obtain a flow domain in which the velocity potential is analytic (sat-
isfies V2¢ = 0) the wake must be excluded from the domain. The line
of the wake can be treated as part of the object upon which there is a
uniform strength dipole sheet which makes the velocity potential jump

when crossing it.

e Here we will use an approximation in which the wake is presumed to
follow the free stream direction. Theoretically, the wake is infinitely
long. For practical purposes, we can model the wake as being about two
airfoil chord lengths long since dipoles further than this from the object

(airfoil) will have negligible effect on the flow on the object.

y
Expanded View An =-n, :
of Wake @ | S S .

A Two-Dimensional Lifting Airfoil With a Wake
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e Green’s theorem is applied to a curve which starts at the far end of the
wake at the bottom, goes along the bottom of the wake, goes around
the foil, and finally goes along the top of the wake. On the top and the
bottom of the wake, on any wake panel, %S are equal and opposite For
any control point on the foil where the potential is to be determined
and a source panel on the wake, G is the same for the two elements
of the integration path, one on the wake top and one exactly under
it on the wake bottom. Therefore, for the control points on the foil,

Jwake G%%df = 0.

e At the start of the wake at its junction with the airfoil, there is a jump
in potential in going from the bottom to the top.

d)wake top — C/)'wake bottom = Ad) = ¢N - le

This jump in potential is maintained all along the wake because as one
moves aft along the wake the potential changes the same amount on the
top and on the bottom by [{ .4, u(7)dz.

e Thus, for control (field) points on the foil, with L being the path around
the foil, W being the single line along the wake from its aft most con-
sidered point to the trailing edge of the foil, and n on the wake pointing
downward for the configuration shown in the Figure , Green’s theorem
takes the form:

/¢f, d€§n+/ A¢>—dfgn+7r¢x Y) /GUz ndl; ,

e If the wake panels are labeled N + 1 to M with lengths ds;_, the dis-
cretized form of the equations appropriate for numerical solution for
values of ¢ at control points, i, on the foil are:

N 0G;

S0 ), Grlditon—) S [ aG”’”d@wntmﬁl—ZUsz [, Gt

Jw=N+1
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To put the preceding equation in the same format that was used for the
non-lifting case, we define:
oG

;;i%d@w(% —0j1) = Qj

/L 8G” dgj + 71‘(51'3' -+ /ij

J anj
Then, the final set of equations to be solved is:
N
> Qij ¢ = B;
j=1
which has the matrix notation:

Q¢=B
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Computation of pressures and forces

For steady flow, Bernoulli’s equation for dynamic pressure is: P = —p|V|?
This presumes that in the very far field, the pressure is hydrostatic and
there is no dynamic pressure there. In unsteady flows, there is an additional
contribution to the dynamic pressure equal to — p%f:2 which is straightforward
to compute at each control point.

Here we concentrate on computation of the —rho|V|? term in the dynamic
pressure. It is most convenient to know this pressure, P; at each control
point. Then the force is: F = 2, Pn;dY;

The central problem is calculation of the velocity at the surface of the object.
At each control point, 7, the total flow is tangent to the object surface so we
need only find tangential velocity. The tangential velocity is the tangential
derivative of the total potential, & (perturbation potential plus any exterior
potential such as —Uxz for the steady flow problems we have been considering).
For two-dimensional flows the tangential velocity component has a single
direction at each control point. We know how to determine the tangential
derivative at a point using a modified central difference procedure for smooth
objects. Even when the object has a sharp edge, this procedure can be used
for all control points except for those adjacent to a trailing edge. In addition,
the numerical derivative can be determined at a point that is midway between
the first and second control points from the trailing edge. Then the tangential
derivative can be approximated at a control point nearest the trailing edge
by numerical extrapolation. An example follows.

We know how to calculate the numerical tangential Derivative, called dy at-
Control point 2. The lengths of the panels are called L, Lo, ... The tangential
derivative at point m, called d,, is given by:

Oy — P

dy =
0.5(L1 + Ly)

Then, by extrapolation, the derivative at control point 1, called d; is numer-
ically approximated as:
d2 - dm

dlzdm—a, b
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Tangential Derivative at a Control Point Near a Sharp Edge
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Boundary Layers
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Two-Dimensional Steady Boundary Layer Equations

z is horizontal direction along direction of main flow velocity u. Velocity
at outer edge of boundary layer is called Uy or V, or U, or V..

y is perpendicular to wall and velocity in this direction is v.

The boundary layer begins, say, at £ = 0 and the boundary layer thickness
is 0. & <« z. Because the boundary layer is thin, to leading order the

pressure is constant through the thickness of the boundary layer, 2€ = 0.

» By
Also, v € u, and % K %Z—.

y v Outer flow
| : Edge of = velocity
layer [ .
o
J Wall shear

T \w\m\\ﬂ\ress@\\\\ 5%
Streamlines

Boundary la
of boundary sary layer
layer flow velocity profile

ou v _,
oz Oy

l —X

ou Ou  10P O%u

“ox "oy~ pox  of

ou 8u_ 19P lg'r_

“or "oy T pos ' pdy
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Boundary Layer Parameters

* /- Shifted streamline
- J Streamline position without
" 1_ boundary layer
g %% //////////— Extra thickness
\\\\\\\\\T\\\
6*

Thickness of Boundary Layer defined as location where u is 99% of U..

6= y]u/Uezo.QQ
The wall shear stress 7, is given by:

()3
v\ Oy wan F \y y=0

The skin friction coefficient, (Y, is:

2T, 2u (Ou
or-ns(e2) 35 - H(3)
y =l pUZ  UZ\0y)

[

The displacement thickness, ¢* is the thickness of a flow of speed U, that
carries a flow rate equal to the deficit in the boundary layer because its
speed is less than U,.
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Mass Fluxes

v 7op Edge of boundary
————— Iayer

| |

I l

l l

I |

} }

. Y I | . Y d Y
mien = fpu dy—\f\f\/:—P -*iIN\r—> Meight = fpu dY+E; <fpu dy)&x
0 0 [}

| |

I Y |

i !

l |

| |

| |

) |

| |
—_— -

p-——--»: :4—— p+ —g’g dx

—_— j— X

I_ __LIVY_—_ ]

/7777777777777 7777777777777 7777777777777

X l ox l

Meft = mright + Mtop
. d (Y
Mtop = 0 (/o pudy) oz

Momentum Equation in z direction

Mright + Mtop + Miefy = Fpressure + Fytress
: Y
Miege =, pu’dy
' Y o oo d (¥ o,
Mright = /o pu“dy + e (/0 pu dy) 0x

. ) d Y
Miop = myopUe = -Uea‘; (/0 pudy) 0z
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Fpressure = dUe Fs=—1,0x
One additional needed equation is:
Y = /0 g dy
Then all the equations on the last two pages can be combined into:
Ed;/ w(U, — ) d /(U—u)dy—%

For y > ¢ the integrands are zero so the upper limits can be changed to .

d 6 dU. é Tw
- —u)dy = X2
=y wUe = wydy + —= [[(Ue — u)dy ;

This is Von Karman’s Momentum Integral Equation. It relates the inte-
grals of the velocity profile in the boundary layer to the shear stress and
U. and U? whose x-derivative is proportional to the pressure gradient.

The momentum thickness © is defined as:
s U U
o= g (1-g)w

With this definition, the momentum integral equation can be written in
the following two forms:

d 2 * dU. —
%[Ue@]‘{-d Ue - —-—Tw/p
de edU, _Cy R
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A second boundary layer equation comes from equating the kinetic energy
change along z in the boundary layer to the energy input or output from
the pressure distribution and the energy dissipation due to shear stresses
in the boundary layer.

The kinetic energy thickness, 6* is defined as:
% 6 U 2
6" = /(; '(7; ( U*) d’y

The kinetic energy dissipation coefficient, Cp, is defines ad:

D
Cp=—
pu,
where D is the dissipation per unit area (along and perpendicular to the
surface).

Using these definitions, the kinetic energy equation is:

do* 3?_"‘_ du,
dz U, dx

= 2Cp

*

The energy thickness ratio, H* is defined as: H* = )

It is common to combine the kinetic energy equatlon and Von Karman’s
momentum equation to obtain:

0 due
Ue dz

6 dH* 20p C,
H* dz H*

+(H—-1)—
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Example of Solution of Momentum Integral BL Equation

Us >

L .1 0 Meters >|

U=2m/s &(x) = 0.01x(1—e *1%) uy) =(1- e_k(””)y)2 p = 1000kg/m?

Problem: Determine the shear stress, 7, at x = 5 meters.

Determination of ké from BL thickness:

0.99 = (1 — e *@@N s k(2)i(@) =53  k(z) = oo

o(x)
At x = 5m, k = 1347 m~ L.

T

d 0.01{1—exp(—0.1z)] . _
/0 Ue(1 — @2 U, — U, (1 — e ™) dy + 0 = p

dzx

0.01(1 — e %1% = 0.01(1 — %) = 0.00393

— Ue2(1 . 6-5.3)2 [1 . (1 . 6—5.3)2] (_i_:

Ue(1 — e *oM2 U, — U (1 — e7¥@)2) 1 dy

0.01(1 — %)

0.00393 d
+ /0 -

= U2(0.000060 + 0.000100) = 0.00016 U?

7 = 1000 x 4 x 0.00016 = 0.64N/m?

T
— L —0.00032
°f spU?2
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X

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

COO0OOOCOOOOOO0O0OCOOO0OOOOO0O

delta

.000000
.001643
.005434
.010179
.015162
.019979
.024416
.028381
.031848
.034836
.037382
.039534
.041340
.042848
.044104
.045145
.046007
.046718
.047305
.047788
.048185

deldata

Page 1
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y/delta

efololelofolololfololololololololololofololofclcfofololelolofelolelolelolelelolololofelolololole Yo Lol e Lol d o

.000000
.010000
.020000
.030000
.040000
.050000
.060000
.070000
.080000
.090000
.100000
.110000
.120000
.130000
-140000
.150000
.160000
.170000
.180000
.190000

.200000
.210000
.220000
. 230000
. 240000
. 250000
. 260000
- 270000
. 280000
. 290000
.300000
-310000
.320000
.330000
-340000
.350000
.360000
.370000
.380000
-390000
.400000
.410000
.420000
.430000
.440000
.450000
. 460000
.470000
. 480000
. 490000
.500000
.510000
.520000
.530000

efolofolololofololofololofololelololofololofolololololololalelolololafolololololofo foleole e e le Lo le Lo o L o)

u/Ue

.000000
.422358
.500261
.551427
.590201
.621605
.648047
.670886
.690975
.708884
.725018
.739674
. 753079
.765409
. 776804
.787378
.797225
.806423
.815038
.823127
.830737
.837911
. 844685
.851092
.857160
.862915
.868379
.873573
.878515
.883221
.887707
.891986
.896072
.899974
.903705
.907274
.910689
.913960
.917093
.920096
.922976
.925739
.928390
.930936
.933381
.935730
.937988
.940158
.942245
.944252
.946184
.948042
. 949832
.951554

"udata
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y/delta

HFOOOOOOO0OOOOO0OOOOOOOOOOO0OO0OO0O0ODOO0O0O0O0O0O0O0OOOOOOOOOOOO0

. 540000
. 550000
. 560000
.570000
. 580000
. 590000
.600000
.610000
.620000
.630000
.640000
.650000
.660000
.670000
.680000
.690000
. 700000
.710000
.720000
.730000
. 740000
.750000
. 760000
. 770000
. 780000
.790000
.800000
.810000
. 820000
.830000
.840000
.850000
.860000
.870000
.880000
.890000
.900000
.910000
.920000
-930000
. 940000
.950000
. 960000
.970000
. 980000
.990000
.000000

COO0O0O0CO0OOCOOOOOOOOOOO0OOCOO0O0OO0OO0OO0ODOOO0OOOOOOOOOOOOOOO

u/Ue

.953213
.954812
.956351
.957835
.959264
.960643
-961971
.963253
. 964488
.965680
.966830
.967939
.969009
.970042
.971039
.972001
.972930-
.973827
.974693
.975529
.976336
.977116
.977870
.978597
.979300
.979979
.980636
.981270
.981882
. 982475
. 983047
- 983600
. 984135
.984651
.985151
.985634
-986101
.986552
.986989
.987411
.987819
. 988214
. 988595
.988964
-989321
.989666
.990000



Calculation of Turbulent Boundary Layer
when Pressure Distribution is Known

FmBBL¢ A7)

This result is approximate since the boundary layer thickness will alter

the pressure distribution.

The principal unknowns (quantities to be determined) are: 6(z) and 6*(z).

An equivalent set of unknowns is 6(z) and H(z).

There are two fundamental equations:

& 6 dU, C;
%———(H-I—Q)(—];dx-F?

0 dH* 2Cp G 0 du,

Ta o 2 TH- Do

(1)

(2)

To be able to integrate the unknowns along the boundary layer, the deriv-
atives of each of them are required: df/dx and dH/dz. Equation 1 is in
the desired form. To put equation 2 in the desired form, use the chain rule:

dH* dHdH*
dr  dzr dH

(3)

Empirical “closure relations” for H*(H) and dH*/dH exist. Therefore we

write the energy equation in the desired form as:

dH H* 1 2Cp  Cj
de 6 dH*/dH | H* 2

+ (H - 1)—
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To do the integrals numerically, we need a means of determining C¢, Cp, H*
and dH*/dH in terms of the principal quantities H and Ry, where Ry =
U /v. These empirical ”closure relations” have been determined by as-
sembling a large amount of experimental data.

Laminar Closure Relations

e | 0-76(H — 4)?/H + 1515, H <4.0
| 0.015(H — 4)?/H 4+ 1.515, H > 4.0

¢ — { r0.03954[(7.4 — H)?/(H—1.0)] —0.134] /Ry, H <174

0.044[1.0 — 1.4/(H — 6)]*> — 0.134] /Ry, H>174
2Cp [ [0.00205(4 — H)5S + 0.207] /Ry, H <40
H* | [-0.003(H —4.0)%/(1+0.02(H — 4)*) +0.207) /Ry, H > 4.0

Turbulent Closure Relations

H. — 3+ 400/R9, Ry > 400
° 1 4, Ry <400

n, _ | Ro, Ry>200
9271 200, R, < 200

g { 1.505 + 4/ Ry + (0.165 — 1.6/y/Ry) HezH)12 H < H,
— : In(Rp,
(H — H,)2[0.007 g 2ed oy + 0.015/ H] + 1.505 + 4.0/ Ry, H > H,

C, — 0.3¢133H M —(1.74+0.31H)
T 2.3026

2Cp 40/H —1 113
7o = 0.5C;—————+0.03 (1 - ﬁ>
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Sea Waves

& ¥ 4

Dominated by inviscid irrotational solution (V2¢ = 0)

Boundary Conditions

0 _ 0 080, 090
8z ot + [83:8:3 + ayc'?yL:C

{%_f + % [(%)2 + (%)2 + (%)Q] }Z:C—l—gg = constant (0) (dynamic)

Linearized Boundary Conditions

(kinematic)

Case of onset flow velocity of —:U.
Now ¢ is the perturbation potential and the total potential is —Ux + ¢.
ol w v [aUa

2 ot 5&]2:0”4:0

0 Ot ox

For steady flow with onset flow:

¢ & 04
.- Vs Ugp ™9

o9 _ U0
0z g Ox?

Case of 2D waves and zero onset flow so ¢ is the total potential.

0¢ ¢ 3(15] _
5. 5 5., 96 =0
Dispersion Relations for waves of ciruclar frequency w = 2w f and

wavenumber = k = 27/ and zero onset flow.
w? = gk deep water

w? = gktanh kh water of depth h
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M3,z f/%_)

v _ % % - 1%
o) = Yot 9z):0 g2,
10¢

¢ = A=) and  (=-=—2

Deep Water

¢ = BelZe!Fs=«t)  Traveling wave that satisfies Laplace’s Equation

2
Bkekzei(kz—wt) — ;_wZBekzei(k:v—wt) k= % w2 — kg
1 . i(kz—wt)
(=——(—w)Be
g
A=2B B=-24=-“2
g w k

Finite Depth
¢ = Bcosh k(z + h) eiks—«t)

Bksinh khei®e=t) — B,21 cosh E eilks-on)

g
2
ktanh kh = “’? w? = gk tanh kh
. | . | |
¢ =~ (~iw)B gilke=wt) %Bcosh(kh) gilkz—wt) A= %" cosh(kh) B
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Example of Simulation

Suppose a two dimensional (long crested) wave is generated with a wave-
maker in a wave tank with an elevation at a specified location given by

z(t), where:

2(t) = 0.97sin(5.2t + 0.82) + 0.99 sin(7.8¢ + 1.24) + 1.08sin(9.8¢ + 2.72)

What is the maximum elevation that occurs in the time interval of 0 to 120
seconds (2 minutes). The usual way of finding maxima of analytic functions
by setting the derivative to zero is not practical here because there are a
great many maxima and the largest of these must be determined. However,
because of the great computational speed of common computers, this can
be done numerically without much effort.

MATLAB Version of program Sinmax
0:0.01:120; Prog

0.97*sin(5.2*t + 0.82) ...

+ 0.99*sin(7.8*t +1.24) + 1.08*sin(9.8*t + 2.72):
zmax = max(z); ’
mmax= find(z == zmax);

tmax =(t(mmax)); =

fpr1?gf2§1,'tmax = %7.3f zmax = %8.4f\n',tmax,zmax);
gid_= fopen('zmaxm.dat', 'w');

f?r1ntf(f1d,'%f7.2f %8.4f\n',q);

plot(t,2z);

xlabel('t");

ylabel('z");

title('sinmaxm');

%
t
z

>> sinmaxm
tmax = 118.490 zmax = 2.9447
>>
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Sinmaxm

T

of _
A .
2+ 4
3 1 ! L 1 L L ! L |
40 41 42 43 44 45 46 47 48 49
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Sea Spectra

We consider wave fields whose statistics are both stationary and homoge-
neous in the horizontal plane.

A sea spectrum function Sr(k,w,0) is a partial description of the statistics
of the wave field defined such that St(k,w,8)dk éw §6 is the contribution
to the average wave energy per unit surface area, E, in the wavenumber,
wave circular frequency and propagation angle bands; dk dw 6.

For surface elevation ((x,t) the average wave energy is defined as:
E=<(>
where < > signifies the statistical, temporal or spatial average.

Thus: < >= [ [* [ Sr(k,w,0)5k 6w 50

Similar definitions apply when frequency, f, is used instead of circular fre-

quency, w, and/or when spatial frequency, %, is used instead of wavenum-
ber, k.

For the frequently encountered case of linear, deep water gravity waves the
circular frequency and the wavenumber are related to each other through
the dispersion relation

w? = gk

so that w and k are not independent of each other. Then the spectrum is
a function of only one or the other of these variables and can be written
as: Si(w,0) or Sy(k,0). These functions are related by:

Sy (k,0) = %St(w,ﬁ)
Hence: < (*>= [ [ 5,(k,0)tkdd = [ [ Su(w, 0)dwdo

For unidirectional (long crested) seas, all the waves are in a single direction
and the spectra are described by Si(w) or S;(k).

<@ >= [ Siw)dw = [~ Sy(k)dk
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m b =

The fundamental linearized plane progressive wave is:
Cz Aei(kx—wt)

¢ - ZC‘;CA ekzei(kz—.wt)

Random sea waves have spectrum S(w, 9).
For the 2D case the spectrum is S(w).

S(m)

0]

J¥* S(w)dw is the contribution to (? of waves with circular frequencies
between w; and ws.
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Fourier Transforms

Fourier Transforms are valuable tools in numerical hydrodynamics because a
number of problems can be described in the form of Fourier transforms and they
can be computed very quickly by the Fast Fourier Transform (FFT) method.
Two of these problems are solving a certain class of differential equations, and
in simulating sea waves.

(o8]

X(f)=Fa(t) = [ _a(t)e ™ dt

-0

2(t) = FX(f) = [ X(f)etdf

As an example, consider a differential equation with constant coefficients of the
form:

dn,y dn—ly

n~; . An—
A T +

Consider Fourier Transforms from x to f where:

Fly(z)] =Y () and Flg(z)] = G(f)

Take the Fourier transform of the differential equation to get:

(@2n )" AnY (f) + (127 f )" A Y (f) + oo + AY () = G(f)

This is an algebraic equation which can be numerically solved for Y (f):

_ G(f)
(27 f )" A + (@2 )" An s + Ag

Y(f)

y(z) can be determined by inverse Fourier transformation. Not only is this
less computationally intensive than solving the differential equation by direct
numerical methods, but the error in the integration rule is avoided.
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Fourier Transforms (continued)

X(f)=Fa(t) = [ _a(t)e ™/t
a(t) = FX(f) = [ X(f)e df
Suppose z(t) = 0 for t < 0 and ¢ > T. Then:

X(f)~ [ z(t)e > dt

Also, suppose x(t) is band limited such that: X (f) = 0 for |f| > Finaz- Then:

2(t) = FX(f) = [T X(f)e s

—Fmazx

Now, consider a periodic function having period ¢ that is identical to z(t) for
0 <t < T'. This function has a Fourier series given by:

o0 . 1 /T .
_ i2mnt/T _ —i2rnt/T
z(t) = n:%oo Ane , A, = T/O z(t)e dt

The express1on for A, is identical to + T times the Fourier Transform evaluated at
f = #%. These Fourier coefficients, A, = %X (T) can be numerically evaluated
very quickly by an algorithm called the Fast Fourier Transform (FFT).

From the A,’s, the function z(t) can be constructed over the ¢-range 0 < t <
T'. Outside this range the reconstruction is periodic whereas the real value of
z(t) ~ 0

Evaluate A, by the following rectangular rule integration:

1
ot = 57 t=70t jmee=N T =Not =z;=uz(jot)
max
1 Nl i2mnjot 1 N i
— t _ —_ p—i2mnj /N
A, Nt 2 z(j0 )exp[ ot ]5t N Z:: zje
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Fourier Transforms (continued)

X(f):()fOTfZFmaz=2—&andf:%, SO(Sf:—T—,; and’l'lma,x:T'f',mm:3
1 1 1
t= ot = = —
° 2Fmas’ of 2FmaeT N
/2 i2rnjot) 1 /2 .
WA ]5t =T, = TA exp [ ] — — Z AnezZan/N
( ) ’ n=§\[/2 " N&t T n:-—N/Z

Fast Computing

Computing speed is minimized by minimizing the number of complex exponen-
tials that must be computed.

Let: q; = 6—i27r/N ¢ = ei271'/N

e—i21rnj/N — 6—i27r(n—-1)j/Nq{ — e—ian(j—l)/N q;z

i2rnj /N __ _i2n(n-1)3/N Jj __ _i2an(j—-1)/N n
ei2mmi/N — gi2n(n-1)j/N of _ gi2mn(j—-1)/ &

Even the powers of q can be avoided:

e—i2r(OO)/N _ |

e~ MW/N _ =2 (OO/N o
e~ 2T W@/ _ g-2r (/N o
e~ 2W/N _ g=i2n (/N o
e~ BN _ g=i2n()@)/N

o—i2r(@)/N _ —i2n(1)(3)/N "

etc.
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Fourier Transforms (continued)

‘Periodicity
The actual integral transforms are of limited extent.
z(t) =0 except for 0 <t <T

X(f) = 0 except for — Fipor < f < Frnae

However, the mathematical constructions, while consistent with the integral
transforms for : 0 < ¢t < T, and —Fmazx < f < Fmaz, are periodic outside
these ranges.

1 = o—i2n(n+N)j/N 1 = —iomnj/N _—i2nj _ L = 12 /N
A”JFN-Y\T—g =—-j\7§)wje e —Ng = A,

N/2 ) ] N N/2 ) ) ) N/2
TiN = Z A, ez27m( J+N)/N _ Z An 6'L21r'n,_7 /N ezzﬂ'n _ Z An ez27rnj /N _ = x;
n=—~N/2 n=—N/2 n=—N/2

Therefore: z; = Z Apeltmmi/N
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Compatational FFT and LFFT of Rehe Numpers
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gt
Simulation of Random Waves

Here we consider two-dimensional (long crested) waves. The waves are approx-
imated as hydrodynamically linear in the sense that wave breaking and other

nonlinear effects are neglected.

2
1
A
~ 0 \//\\//\/\\//\\//\\/N\\/ N\
-1
2 4 6 8 10 12 14
t
2
1

0 10 20 30 40 50
X

n=0

00 2
((z,t) = > Z,cos (—%@x + wyt + an)

where the Z,,’s are chosen to provide the desired wave spectrum and the «o,,’s are
random numbers uniformly distributed on 0 < a < 2.

00 2
An alternate expression is: ((z,t) = ), Zpexp [z (—ﬂx + wpt + an)}
Y

n=—oo

Combining e**" into Z,, the surface elevation vs time at z = 0 is:

¢(t) = i Znent

n=—oo
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0.04| one-sided 4
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0.01}
Qe L T
8 6 -4 2 0O 2 4 6 8
®
4
5,
E, AREA =S 50
z S
51
& b
% 2 1 0 1 % 2 3

Circular Frequency, (radians/sécond)

The region in the “almost trapezoid” is represented by a sinusoidal wave having
frequency w, and the same energy, F, of this region of the spectrum. The
sinusoidal wave Ae™°t has energy |A%|. Thus,

|1A2] = S(w,)dw

The waves are random processes and can be represented in two different ways.
One way is to have stochastic waves and a stochastic spectrum whose expectation
is equal to the spectrum being simulated (Type 1). The other way has stochas-
tic waves and a deterministic spectrum equal to the spectrum being simulated

(type 2).
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Similarly, at t = 0 the surface elevation vs z is:

o

C(:L‘) = Z Z,'le"ik"m = Z Zneik”x where kn:%

n=—oo n=—=oo

With w, =2méf, k, =2mndéb, (b= 1/)), t = jét, = = jér, and n limited
to —--]2! <n< 1—;’- with 6 f 6t or 6bdx equal to 1/N, the expressions for ¢ have
the form of an inverse discrete Fourier transform. Hence, by first choosing the
Zy’s so they are consistent with the wave spectrum, the surface elevation for all
values of ¢ or for all values of x can be computed very rapidly by using an FFT
program.

Either set Z_,, = Z or use non-negative n and take the real (or imaginary) part.

We will use the method in which Z_,, = Z.

This corresponds to a two-sided spectrum whose levels are half the levels of the
corresponding 1-sided spectrum.

206



Wwo&2
Type 1

At a fixed value of x, the sea elevation is ((t) which is a sample function of a
random process having a 2-sided power density function, S, (w). The associated
1-sided spectrum is Sw(w) = 2S,(w) for w = 0. The fourier transform of {(t)
is Z(w). The spectrum and the Fourier transform of {(t) are truncated at |w| =
we = 27 f.

¢(t) is discretized with the time interval 6t = 7/w. to satisfy the sampling theo-
rem. Thus, ((t) is specified at the discrete times (; = ((jét), 7 =0,1,2,...,N.

The Fourier coeflicient Z; corresponds to the circular frequency w; = jow,
J= —%[- +1,...,,0, % , where dw = %. N is usually chosen as a power of 2
for computational efficiency.

For the Type 1 approach, each Fourier coefficient is separated into its real and
imaginary parts and each of these is an uncorrelated Gaussian variate.

Z; = Zy, +iZ;,

Zr; and Z;; are identically distributed with the probability density function:

(Z.) 1 VA
)= exp | ——=

Pl = iar P\ 20

From the physics of the modeling, where here £ means “Expectation”:

FE [IZf” = Sy(w;)dw
B[22 = B[22] = Sulw))iw

From the mathematics of the Gaussian pdf: 032- =F [ij]

1 1
;= Jgsw(wj)w = JZSW(I%'D&U

There are computer programs which give Gaussian distributed random numbers
for which the user specifies o;.

Type 2 Zj = €",/Sy(w;)0w = eiaj\] —21—Sw(wj)6w : wj >0

«; is uniformly distributed on 0 < o;; < 27 and can be obtained from a random
number computer program.
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We truncate the spectrum at frequencies +N/26w.

Thus the expression for a simulated two-dimensional (long—érested) random wave
elevation at a point on the ocean surface is:

N2 1 '
¢it)y= > ew‘"\J ~Sw(|ndw|)dw eimiw)t
_N/2 2
where a” is a random number, < o, < 27, and o, = —a_,.

This can be extended to a long-crested wave field, dependent on = and ¢ as:

N/2 ] 1 .
C(z,t) = > ewn\] —Sw(|ndw|)dw etl(néw)t—(ndw)indwiz/g)
“N/2 2 -

This is because |k| = w?/g.
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wavesims, M
% Wavesims
dt = 0.05;
npts = 8192
nptsoZ npts/2
dt* npts; /dt * 8192 for 8192 total points
t = O dt: (tr- dt),

g = 9.81;

v = 15.0;

df = 1. O/tr,

ffold = df * nptso2; %df * 4096 for 8192 total points
f = 0:df: ffo1d

f = f+eps;

facl = 0.0081 * g*g/tp4;

fac2 = 0.74 *(g/v)A4/tp4

s = 0.5%facl ./ f.A5 .* exp( -fac2 ./f .A 4);

rand ('state’ ,sum(lOO*c1ock)),

p=2.0%*pi * rand(1,nptso2);

p(nptso2+1) = 0.0; %4097 for 8192 total points
z = exp(i*p) .* sqrt(s*df);

zt = [ z conj(flip1r(z(2:4096)))];

zeta = real (fft(zt));

%The above gives same result as zeta = npts*real (ifft(zt))
plot (t,zeta);

x1abe1('TIME (sec) ")

ylabel ('SURFACE ELEVATION (m)');

title('simulated Sea waves at a Point');

209



SURFACE ELEVATION (m)

Simulated Sea Waves at a Point

4 I T I

T L T

0 50 100 160 200 250 300

TIME (sec)

210

350

1
400

450



SURFACE ELEVATION (m)

Simulated Sea Waves at a Point

I i T

100

|
105

I
110

|
115

1 1 1
120 125 130
TIME (sec)

211

135

L
140

]
145

150



0.18 - T T T T T T T

0.16

0141 B

0.12 4

zt-mag

0.08 4

0.06 j ]

0.04 i .

0.02 .

0 | 1 ] | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
point number

§ 212



0.18

0.16

20

= ——————— T

4

-—

¢

-—

4

-

Qo

1O

-

- co

- ©

- <

N

—————————— ¢ 1 > .LO

< N -~ [oo] o < o o
-~ - o o o o (=]
o o o o o (o]

few-)z

frequency

213



zt-mag

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

Il

0.2

04

0.6

0.8

1
frequency

214

1.2

14

1.6

1.8




&u ey O ? _Four iﬁL_H]:_r_mﬂﬁS.ﬁat.ms_AI.‘_‘,_.Z:...;Y.L,_Kﬂ rsSe Feariec

T rEETS and Wave Simulation.. .

x“‘irﬁ“““y“i OE e (o y X@)N'”“‘o@

-w

COTLS OIQF CancTIOnS O‘F 7‘L\€ Fof‘m R
X(t)=0 EXcept for OZL £ S_T

TLé O , : gy

,,,,, XEY= 5 X () 4“"‘” f‘_n_Q{;,_x[&.)é_Jw X )g‘:‘“_’{*d;,__

g

AAAAAA e e T
C Onsf‘racT e e Ciodia Fgacm en, Xp (&) ag{;emoaq‘

L Xe(= XY fae o<k T e

_ .I XP (t) . HGS G RFtourlerSex:mg,, .ﬁ.[?@.p_tﬁs_e_otq_ﬂm,.M.__"..”__M.._

=00

;.M;N@Lw.th,ﬁth n- T A,

‘ﬂs |

I‘F T 1S Vvery 'qrﬁp) Values of nso,’, 2

arce _denge Co X&) Can _be cdetermined. Crom the
_Fourver CoefficientS gt closely Spaced £ reguencles.

A St ikin i e et i e A .- . ——

215



Note +hat  Anz = X(2)

Since =8 © Noso foc |0l >TFmax g alse|§F

b
o Il

: }‘- —g¥ —+

-rt:‘max

_ | LomFe
In the Cdnge OLEST, X(t) 2 Rne
‘ - h:—rﬁﬂu
Let Tﬁa;: M o A2\ < ﬂ:_.a\-'lrf‘t
- Xty == o
Q*M:-N ' =1

Ser c/¢=§gﬁ L E=iGe, xX( Sl‘—)EXJJ./o/ﬁ;‘;

e need =28 LEValtate & :er?’ﬁ = L2 nwﬂ

ﬁ-nﬁ.

.

'ﬁ— fﬂv\-
—l N

S5 S
AL

. -~1-
L-"i

U pPproximatiom of /QQ:J’FX(?Q>

Discreti ze
Do A E XN

TNV nzg

— wﬁ—_—e%mwwﬁﬂ - ity

S A,‘ N/?- . n_‘.‘o '
| Iﬂ x(ts & rzal, B

/
¢

216



T eo Simylare coqgves /)m/mj e
_One- s o/“[ gregugnﬁ_gfgafrhm S ({")

eetrihosSe o pyivalend 3 wo-Side-o--g peaffﬁm

’

LS Selfy= 55 (CiF)—;

the ¢ [evation ( »ﬁt) at < Reint IS ...

06 58)= 5— Ane

TrﬁJ_# [ —— . e e
N ? - §’ ,5 - I

w here! = ke ’ W{f;,sﬁ?f“w_mﬁﬂuﬁ

~§- L
4

=& Jll;"_ Se(nse) Sf )

W‘\Cfﬁ’o Q(n LS a " an O‘Idm D am Léf‘ﬂ ' N

The Gn 1O A X1 e e e

Wa%(,w coles  Cor An’ are asg

éhwzh cn_the

{3;-411!?“5 ,'[Dage ,'_C’ol" r’eﬂl "f.

__Ths (s preciselr +he form of n

. inVerse Fast Feurie . transrmn




http://wiww taygeta.com/random/gaussian.html

i aussi Numbers
Generating Gaussian Random wrS e

Generating Gaussian Random Numbers

This note is about the topic of generating Gaussian pseudo-random numbers given a source of
uniform pseudo-random numbers. This topic comes up more frequently than I would have expegted,
so I decided to write this up on one of the best ways to do this. At the end of this note there is a list
of references in the literature that are relevant to this topic. You can see some code examples that
implement the technique, and a step-by-step example for generating Weibull distributed random
numbers.

There are many ways of solving this problem (see for example Rubinstein, 1981, for an extensive
discussion of this topic) but we will only go into one important method here. If we have an equation
that describes our desired distribution function, then it is possible to use some mathematical trickery
based upon the fundamental transformation law of probabilities to obtain a transformation function
for the distributions. This transformation takes random variables from one distribution as inputs and
outputs random variables in a new distribution function. Probably the most important of these
transformation functions is known as the Box-Muller (1958) transformation. It allows us to
transform uniformly distributed random variables, to a new set of random variables with a Gaussian
(or Normal) distribution.

The most basic form of the transformation looks like:

sgrt( - 2 ln(xl) ) cos( 2 pi x2 )
sgrt( - 2 1ln(x1l) ) sin( 2 pi x2 )

vl
v2

o

We start with rwo independent random numbers, x1 and x2, which come from a uniform distribution
(in the range from O to 1). Then apply the above transformations to get two new independent random
numbers which have a Gaussian distribution with zero mean and a standard deviation of one.

This particular form of the transformation has two problems with it,

1. Itis slow because of many calls to the math library.

2. It can have numerical stability problems when x1 is very close to zero.
These are serious problems if you are doing stochastic medelling and generating millions of
numbers. :

The polar form of the Box-Muller transformation is both faster and more robust numerically. The
algorithmic description of it is:

float x1, x2, w, vi, ¥2;

»x
=
[t

w = sqgrt{ (-2.0 * log(w ) ) / w);
vyl = x1 * w;
y2 =

where ranf() is the routine to obtain a random number uniformly distributed in [0,1]. The polar form
is faster because it does the equivalent of the sine and cosine geometrically without a call to the
trigonometric function library. But because of the possiblity of many calls to ranf(), the uniform

1of3 7126/99 5:49 PM
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random number generator should be fast (I generally recommend R250 for most applications).

Probability transformations for Non Gaussian distributions

Finding transformations like the Box-Muller is a tedious process, and in the case of empirical
distributions it is not possible. When this happens, other (often approximate) methods must be
resorted to. See the reference list below (in particular Rubinstein, 1981) for more information.

There are other very useful distributions for which these probability transforms have been worked
out. Transformations for such distributions as the Erlang, exponential, hyperexponential, and the
Weibull distribution can be found in the literature (see for example,MacDougall, 1987).

Useful References
Box, G.E.P, M.E. Muller 1958; A note on the generation of random normal deviates, Annals Math.
Stat, V. 29, pp. 610-611

Carter, E.F, 1994; The Generation and Application of Random Numbers , Forth Dimensions Vol XVI
Nos 1 & 2, Forth Interest Group, Oakland California

Knuth, D.E., 1981; The Art of Computer Programming, Volume 2 Seminumerical Algorithms,
Addison-Wesley, Reading Mass., 688 pages, ISBN 0-201-03822-6

MacDougall, M.H., 1987; Simulating Computer Systems, M.L.T. Press, Cambridge, Ma., 292 pages,
ISBN 0-262-13229-X

Press, W.H., B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, 1986; Numerical Recipes, The Art of
Scientific Computing, Cambridge University Press, Cambridge, 818 pages, ISBN 0-512-30811-9

Rubinstein, R.Y., 1981; Simulation and the Monte Carlo method, John Wiley & Sons, ISBN
0-471-08917-6

See Also: A Reference list of papers on Random Number Generation.

Everett (Skip) Carter

Taygeta Scientific Inc.
UUCP: ... 'uunet!taygeta!skip
WWW: http://www.taygeta.com/

7/26/99 5:49 PM
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/* boxmuller.c Implements the Polar form of the Box-Muller
Transformation

(c) Copyright 1994, Everett F. Carter Jr.
Permission is granted by the author to use
this software for any application provided this
copyright notice is preserved.

*/

#include <math.h>

extern float ranf(): /* ranf{) is uniform in 0..1 */

float box_muller(float m, float s) /* normal random variate generator */
{ /* mean m, standard deviation s */

float x1, %2, w, yl;

static float y2;

static int use_last = 0;

if (use_last) /* use value from previous call */
{

yl = y2;

use_last = 0;
}
else
{

do {

x1 2.0 * ranf() -

= 1.0;
x2 = 2.0 * ranf() - 1.0;
w=x1 * x1 + x2 * x2;
} while ( w >= 1.0 );

= sqgrt{ (2.0 * log( w ) ) / w);
x1 * w;
X2 * w;
use_last = 1;

w
vyl
y2

non

}

return( m + yl1 * s );
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Wave Statistics
One way to calculate wave statistics is directly from long-term simulations.

Example What is the expected value of the largest wave elevation in a day?

Solution by simulation from a known wave spectrum.

1. Simulate waves for many days.
2. List the largest elevation in each day.

3. Calculatethe average of the values in the list.

Another Example What is the probability that the largest wave elevation in
one day is less than the value V. Solution by simulation.

1. Simulate waves for many days.
2. Determine the fraction of days that the elevation does not exceed V.

3. This fraction is an estimate of the desired probability.

The above direct approach is cumbersome and computationally intensive. Many
wave statistics have been theoretically determined in terms of the wave specturm.
The associated formulae can be determined using numerical integration.
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Results from Theory

The spectral moments, m,,, are defined in terms of the one-sided spectrum,
Sw(w), as:
o0
My = /0 Sy (w)dw

The following results apply when the surface elevation is a gaussian random
process.

N oaes AN e N
V/\VMAV ARV,

TIME

SURFACE ELEVATION

Number of Waves per Unit Time

The average number of times the wave elevation, (, crosses the mean sea
level (¢ = 0) per unit time while increasing is called f, and given by:

1 mo

fo —

_27r my

The average number of wave crests per unit time is called f. and is given
by:

fom o | A

B % mo
The bandwidth, €, is given by:

= I=RIT?
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Definition of a gaussian random process For any number of variables,
the joint probability density (pdf) of all the variables is a joint gaussian
random variable at each time for a gaussian random process. This proba-
bility density function is given by:

1 1 -1
p(z1, 22, ..., Tn) = Wexp{—§[X]T[A |[X]}

[X] is the column vector of the variables. A is the n-by-n covariance matrix
whose elements are given by:

Ay = Elziz;]

For most wave statistics of interest, the doubly joint pdf between surface
elevation, ¢ and vertical surface velocity, ¢, and the triply joint pdf where
the surface acceleration, (, is included are all that are needed.

b1 mag* + mo(?
p(C’ C) - o Mo, exp [ 2m0m2
Py 1 _m2m4§2 + (momy — m3)¢% + momal? + 2m2¢¢
p(C) C) C) (27r)3/2\/7n2(m0m4 = m%) € [ 2m2(7n0m4 — m%)
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The normalized Gaussian probability distribution function (pdf), ¥(z), is:
1 = 2
L —-z%/2
U(z) = Wor /_ooe dz

Call the crest height &.

The normalized crest height, 7, is defined by: 7 =

<

The probability distribution function for 7 is:

Pn) =¥ (ﬂ) —VI—eEe 2y (\/1_——6277)

€ €

and the pdf for 7 is:

02 -
/ / c:']-O .
4
A i L 1 2 : ~ e

-2 -1 0 | 2L 3 t”
FigureZJ5 Probability density function of 7Z for various
values of the band width €.

Typically, € = 0.6.

For engineering purposes we are interested in large seas (n >> 1). This
corresponds to the tail of the pdf for n. In this region:

p(n) =v1-ene P()=1-vVi-e&e
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Average Amplitude of the 1/n’th Highest waves

Call the smallest normalized wave amplitude in the 1/n’th highest Waves

M/n- 1
= =1-P(mm
" (771/ )

Example: n = 10.

1 - (probability that a wave amplitude is less than the smallest of the 10%
largest waves) is 1/10.

This is because the probability that a (random) wave is smaller than 10%
is 90%.

For n >> 1, use the approximate P.

1

— =+v1—€?exp
n

1 2
"énl/n]

M/n = \/2 In(nv1 — €?)

Amongst the 1/n’th highest waves, the conditional pdf is:

Prsmy. (M) = np(n) =nV1 — n exp(—=n°/2), M <N < o0

The expectation of these amplitudes is the average of the 1/n’th highest

waves. .
Tjn = nV1 — €2 ne " 2dn
™M/n

Let n' = v/1 — €2 n. Then, n' is the number of zero up-crossings in a record
with n crests. The result of the integration is:

R EC N e
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Extreme Waves
Consider n non-dimensional random wave Amplitudes. Each has same pdf.
What are the probabilities of the largest waves in the set?

Aproach

Order the waves from smallest to largest.

¢1 is the smallest and ¢, is the largest wave amplitude. Now, each of the
¢’s has a different pdf.

We want to find the pdf for ¢,.

Probability that ¢, is less than a particular value ¢, is equal to the prob-
ability that all the waves are smaller than ¢,,_.

Py, (¢n,) = [Fy(¢n,]”

The amplitude that has a probability, a, of being exceeded by ¢, is called
aPn.-

Py (atn) = [Pyladn)]" =1 —a

Meaning of the Nomenclature

Suppose a = 0.01. Then the amplitude whose probability of being
exceeded by ¢, is 0.01 is named ¢ 91¢,.

The probability that ¢, is less than (3¢, is 0.99.

Py(atn) = (1~ a‘)l/n

€

AL (”“—2

n €

v <&> — \/r:?exp

a¢n> =(1-a)/m
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Since we are interested large waves, we can use the expressions for the tails
of the probability functions:

Pn)=1—-+v1-¢€ e /2

Then, 1—+v1—¢€?exp

1
5 a?bgz} =(1-a)/r

| i—e
Solve for a¢n . a¢n = \;an (1 _ (1 _ OOl/n)

Note: The value of n for a given period of time T" can be obtained from:

1 My
fc_%\ —TT—L;
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Dynamics of Horizontal Shallow Sag Cables in Water

\ | y )

Static Solution

H is the horizontal component of the Tension.
w is the weight in water/unit length.

T is the tension.

L is the static length.

H w H w
y = —cosh -z ” coshHa:
For T'> wL
T, o
y="" 1+21;,x2+... -2 T=T,~H
@“ww
de T,
Py w .
d_xz- = 7_’ =« static curvature = «
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Dynamics

a

I

2
vertical mechanical force/unit length = (To + T) (a + ﬁ)

T

q is the displacement normal to the cable towards the inside of the static
curvature.

2
dynamic vertical mechanical force/unit length = (TO + T) (a + %) —Toa
: : : dq |dq
hydrodynamic vertical force/unit length = —bd—t E\

where: b = %pCdD, p is the density of water, Cy is the drag coefficient and
D is the diameter of the cable.

Equation of Motion

2

0%q . &g dq |dg
— = (T, +T — -2 =T,
m—o— = (T, + )(a+ 32) bt tl e

Strain Compatibility
. EA
Tension increase due to ¢ = increased length X -
F is the elastic modulus and A is the cross sectional Area of the cable.

7= oo faas e 3 [ (52 )ds}

where: p, is the sum of the tangential extensions of the ends of the cable.
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Oscillating Rigid Objects
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‘Potentials and Boundary Conditions

7

6
¢T= ¢I+¢D+;Cj¢j

On the Free Surface:

2
{—w — Uzw—a- + u2 8
ox

0 5 0 0
and: [—w —Uzwa—x 3 2+ga]¢> =0
On the Hull:
on on

Pressure on the hull:

0 . :
p=—p (z'w - U%) 16 — pg(Cs + Cay — (5)e ot
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Strip Theory

ml |
g
\“ "4 7)( m
| N
\-._._.__.._.._._.._._.____ - cm - .ll
M = surge nm = heave ns = pitch
N2 = Sway Ny = roll Ne = yaw

Sign convention for translatory and angular displacements

For inviscid, irrotational theory,

6
¢r = ¢1 + ¢p + > m;¢; + interaction terms
k=1

In linear theory the interaction terms are neglected. Here we focus on the
¢,’s and the forces and moments associated with them.

In general, a force in the j'th direction will lead to motions in the six
degrees of freedom, n,, k=1,2,3,4,5,6.

Sinusoidal forces which generate sinusoidal motions are considered. The
equations of motion for sinusoidal excitation are:

6 .
> {(Mjx + Aji)iik + Bjrik + Cixne} = Fye™®, 7=1,2,3,4,5,6
k=1 i

nk(t) — Ckez’wt

6 :
> {—w?(Mje + Aji)Ck + iwBile + Cirle} = Fj, 7=1,2,3,4,5,6
k=1
6
k=1
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— M7 is an inertial force in the j'th direction due to motion in the &’th

direction.

'—Ajkﬁk, —Bjrnk, and —Cjxny are hydrodynamic and hydrostatic forces in
the j’th direction due to motion in the k’th direction.
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For a ship having port/starboard symmetry:
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Boundary Conditions on Hull

C | 7
X - 7

n=(n,,n,,n)  n&¥n, U

Definitions: (ny,ng,n3) =7 (ng,n5,n6) =7 X 7T
Except for j = 5 and j = 6:
0 - d ., ; : . ; i
%quéje“"t = agjeu"tnj Cm—e"" = (jiwnje — = iwn,

For j = 5 (pitch) and for j = 6 (yaw) there is a change in the normal
velocity associated with U:

Here, for positive pitch, there is an upward (positive z) component of veloc-
ity equal to —U(se™*. This has a component normal to the hull surface of
—U{s e“'ns.

For n = 5: a—qbi:iam5-|—Ung
' on

For n = 6: %:iwnﬁ—Unz
on
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For slender ships surge forces F; are much smaller than the other forces. Fur-
thermore, surge motions have little effect except for the special case of towing.
We neglect surge here.

Under these conditions, the pitch and heave equations are decoupled from the
sway, roll and yaw equations.

PITCH AND HEAVE EQUATIONS

[—w*(M + Ass) + iwBs3 + Css) (5 + |[—w” Ags -+ iwBss + Css| (s = F3

[~w?Ass + iwBss + Css| (s + [—w?(I5 + Ass) + iwBss + Css| (5 = F

Hydrodynamic and Hydrostatic Coeflicients
The hydrodynamic forces on the ship due to oscillatory motions of the ship are
called radiation forces. For a motion of the form n;(t) = (,€**, the linearized
force in the j direction is called Tjxe*®. Tj; will be a complex number having
areal part and an imaginary part. It is conventionally written in the following
form:

Tji, = (W*Aji, — iwBji, — Ci )Gk
Aji is the added mass for forces in the j direction due to motion in the k
direction.
B, is the damping coefficient for forces in the j direction due to motion in
the k direction.
Cj is the hydrostatic “spring constant”.

U
A33 = /L a33d§ - ;Eb?’A?’ B33 = /;Ib33d§ + Ua§43
U U U?
Ags = — /L§033d§ — EB??:; + a‘gmAb??, - ;7“31:13
4 U,
Bgs = — /Lfb?,adf + UA33 — Uz ga33 — Eb%

A$s and Bj, are the speed independent parts of the respective coefficients.
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U U
Asz = — /L§a33d§ + EB&O’ + angb3A3

Bss = — [ &bsgdé — UAS; — Uz ably

U? U U?
2 A A
A55 = — /L€ a33d§ -+ ;5‘433 — 5556?41)33 + EZ'ACL%

U2 U2
Bss = /L &%bssd€ + §B§3 Uzags + 2:cAb§‘3

Cs3 = pg /L bd¢ = pgAwp

b is the beam of each section and Awp is the waterplane area.

Css = Cos = —pg [ €bdt = —pgMywp

Css = pg [ €%bde = pglwp

My p is the moment of area of the waterplane and I,,, is the moment of inertia
of the waterplane.

U
Fs = pa /L(f3 + h3)d¢ + pa—ax 4hd
iw

U

U
F = —pa/L [f(f3 + h3) + 5h3] d¢ — paExAhgl

a is the wave amplitude. f;3 = F3e™! is the Froude-Krilov force.

243



ST 3 ¢

F3(.’L‘) _ ge—ikxcosﬂ/C N3eikysinﬂekzd£

N3 is the vertical component of the 2D normal to the section. N, is the
horizontal component of the 2D normal. 3 is the wave propagation angle. d¢
is the element of arc length around the section.

hs is the sectional diffraction force.

ha(z) = w,etkzcosB /C (iN3 + Nysin §)etFvsinPekzq)dy

wOZ\/g_k w, = w + kU cos 3

13 is the velocity potential for a 2D cylinder of shape C, oscillating in heave.
13 is the solution to V243 = 0 subject to the boundary condition for heave
motion. It can be obtain by several ways including panel methods.

/// // // |
777/

Thus, to do the the longitudinal integrals (d§), one must know the 2D hy-

drostatic terms and the 2D added mass, damping, and velocity potential for
heave.
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SWAY, ROLL AND YAW EQUATIONS
[—w2(A22 + M) + ’iWB22] C2+[—w2(1424 — Mz,) + iwBoy] C4+[—w2A26 + z'ngﬁ] (s = Fy

[—w?(As2 — Mz) + iwByo| G2 + [—w*(Ass + Iy) + iwBas + Cua] (4
+ [—w2(A45 — 146) + ’in46] C(; = Fy

[—w2A62 + inGQ] (2+[¥w2(A64 — ]46) + 'in(54] C4+[—w2(A66 + 16) + inﬁﬁ] (s = Fg

All the coefficients can be determined from the 2D sectional sway and roll
added mass and damping, the 2D sectional potentials for sway and roll and
the hydrostatic roll restoring force.

For all the five motions considered, the response at the resonant frequency is
largely controlled by the wave generation damping (B coefficients) except for
roll where the damping at resonance is dominated by the viscous damping.
Therefore, for strip theory to give accurate results for roll, an estimate for the
viscous damping coeflicient must be added to Bsg.
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SIMULATIONS OF SHIP MOTIONS IN RANDOM SEAS

The complete problém includes effects of waves coming from all directions.
Here, for simplicity and clarity we will consider long-crested random waves
coming from one direction.

The “system functions”, §;(w), are complex numbers, dependent on frequency.
For each one, the magnitude is the ratio of the sinusoidal motion amplitude to
the wave amplitude. The phase is the phase lead of the motion with respect
to the wave elevation at the origin of the coordinate system.

Suppose we have a wave spectrum, S.(w). The wave elevation at the origen of
the ship, or offshore structure, at the origin of the coordinate system, can be
simulated as:

N .
Cw(t) — Z Znez(n&u)t
n=-N

where: Z, = eio‘“J %Se(néw)éw

Within the restrictions of linear theory, each ship motion can be simulated in
the specified random wave field as:

N ,
ni(t) = Y &(nbw)Z,e ™
n=—N
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Added Resistance and Drift Forces

An important "second order” effect is the average force an oscillating wave
field can imoise on an object. These forces are typically small in comparison
of oscillating forces and spring-like resorting forces 'so the horizontal mean
forces are most important. For a ship, this force is called the added resistance
and for an offshore structure it is called the drift force.

One again, for simplicity and clarity we will consider waves propagating in a
single direction. If a sinusoidal wave has amplitude A, the dominant mean
force has the form 7,(w)A?. r.(w) is called the added resistance operator. It
is found by solving the second order hydrodynamic problem. However, Some
first order effects contribute.

Consider the term in Euler’s equation (V - V)V When V is sinusoidal, this
term will contribute zero frequency terms.

In the presence of a wave spectrum S(w), the total added reesistance is:

Radied = || 2ra(w)S(w)dw

FORCE
AEDED RESISTANCE DRIFT (2
T —
4__.—
WAVES

(o ldddd
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Gerritsma and Beukelman Theory for Added Resistance

The “exact” formulation for the added resistance operator, r,(w,) requires
solution of the complicated 3-D second order problem. However, Gerritsma
and Beukelman ! developed a semi-empirical formulation for 7,(w,) based on
strip theory that is remarkably accurate. The basis of their theory was as
follows:

1. Each section of the ship encounters a relative vertical velocity that de-
pends on the wave, and the heave and pitch of the ship.

2. This relative vertical motion generates waves which carry energy away
from the ship. '

3. Equating this radiated energy, per unit time, to the added resistance times
the ship speed provides a formula for the added resistance.

This formula is:

refw) = 5 ) [N(x) - Vd—”;iﬂ} V2(2)ds

where the ship extends from 0 to £ and & = wavenumber of the wave,

N(z) = heave damping coefficient per unit length of ship at position z,
V = forward speed of ship,

m(z) = added mass per unit length of ship cross section at position z,

V.(z) = relative vertical water velocity amplitude at position z.

Vi=z—z0+VO0-(,

where 2z is the heave velocity of the ship at z = 0, 8 is the pitch angle of the
ship, and (, is the average of the velocity of the fluid motion in the wave over
the width of the ship cross section at its local depth.

1Gerritsma, J., and Beukelman, W., “Analysis of the Increase in Resistance in Waves of a Fast Cargo
Ship”, Technical report 169 s, Netherlands Ship Research Centre TNO, April, 1972
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Nonlinear Wave Force Calculations

Second order wave forces arise both from the second order potential, which in-
creases the accuracy with which the nonlinear terms in the free surface bound-
ary condition are met, and also from the influence of the first order solution
on the nonlinear term in Euler’s equation. For example, consider the term:
ug—;‘. As an example, a field of two sinusoidal waves is :

u = Ay sin(kyz — wit) + Az sin(kox — wot)

g—z = Alk?l cos(klm - wlt) + Azkg COS(kQCB - wgt)
At z=0:
u = —A; sin(w;t) — Agsin{wst)
g—:—: = A; cos{wyt) + As cos(wat)
ou 9, . .
u% = —Ajk; sin(w;t) cos(wit) — A Agks sin(w;t) cos(wat)

— Ay Aok sin(wst) cos(wit) — A2k, sin(wat) cos(wot)

Consider just one of the four terms:

(u—aﬁ> = —A;Asky sin(w;t) cos(wst)
021) 1

 AiAsk

= 5 sin(w; + w)t — Ardoky

sin(wl - U)Q)t

If wy and wy are only slighitly different, w;+ws, is a comparatively high frequency
and w; — wy is a very low frequency.
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Vertical Sea Loads v. | v,
3
[ Vsq
Y 1 / v
L. b ¢ : N\ ]

V, = compression force Vi = torsional moment

V 2 horxzontal =v
shear I/ ert' l b 1
s = enical h = i
I‘ \ 4 shear | 2 8 = horxzontal bending

The complete strip theory sea loads are considered in the reference ”Ship Mo-
tions and Sea Loads”, by Salvesen, Tuck and Faltinsen. Here we consider the
vertical loads which lead to the shear force, Vi and the longitudinal verti-
cal bending moment, V5. Sinusoidal forces and motions are considered. For

example,

Vj’ = Vjei“’t where the real part of all complex expressions is implied

Likewise, 7; = (;e*"

The fluid forces are separated into hydrostatic forces R;, sea wave exciting

forces E;, and hydrodynamic forces resulting from unsteady ship motions D;.

[; is the inertial component of the j** structural force due to motions of the

ship. Then, the structural loads can be expressed symbolically as:
Vi=1I; — Rj — E; — D;

We are concerned with terms having subscripts 3 and 5. All the longitudinal
integrals in the following are over the portion of the ship forward of the section
under consideration. We denote these integrals as:

Iy= [, —wm(€) [ — €G] de
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D3 =

D; =

Iy == [, —w'm(&) [€ — =G — €Gs] dg
Ry =—pg [, b(€) [Gs — &) de
Rs = pg [, b(E)[€ —][Gs — £¢s)de

Es = pa {,/;,(f?’ + h3)d€ + (%h:a)&:z}

Es = pa ‘/Lf {(5 —z)(fs + h3) + Z%hs} d¢

- /Lf {w?ass(Gs 7 €Gs) + iwbss(Cs — £G5) + UbssGs + iwUags(s ) dé —

112
— {iwa33U(C3 — &G5) + Ubss(G — £G5) + UagsCs — %533&)}
E=x

ags(€ — x) {—w?(Gs — £¢s) + iwbss (G — €¢5 ) dE +

Ly

772
/L, {ina33(C3 — () + Ubss (G — 265 ) + UlassGs — %‘63355} d¢
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APPENDIX
Further Material on Panel Methods and Strip Theory
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Panel Methods

13.024 Numerical Marine
Hydrodynamics

Alexis Mantzars

13.024 Numerical Marine Hydrodynamics 1

During the last decade, advancements in computer technology have made
possible the development of new classes of three-dimensional numerical tools
for analyzing problems in Naval Architecture, such as ship wave resistance
and motions.

Early attempts to model ships in potential flow focused on variations of
slender body and strip theory to study simplified body geometries and free
surface conditions.

As computing power increased, so did the development of three-dimenstonal
methods. Of these, considerable attention has been received by boundary
element or panel methods.
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Panel Methods at a Glance

» Distribute sources and dipoles on body
* Discretize

» Green’s Theorem gives system of equations
for singularity strength on each panel in
terms of boundary conditions

» Forces on body found from flow solution

13.024 Numerical Marine Hydrodynamics 2

Panel methods attempt to solve the Laplace equation in the fluid domain by
distributing sources and dipoles on the body and, in some methods, on the free
surface.

These surfaces are divided into panels, each one associated with a source and
dipole distribution of unknown strength.

Green'’s theorem relates the source and dipole distribution strength to the
potential and normal velocity on each panel.

The boundary conditions to be applied to the problem are often linearized and
they determine either the potential or the normal velocity on each panel.

Having solved for the unknown source and dipole strengths, Green’s theorem
may be used to find the potential at any point in the fluid domain.

Hydrodynamic forces are found from pressure integration and are used with
Newton’s Law to determine motions.
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Cases to be Examined

* Unbounded fluid flows

~ Steady motion through unsteady flow field
 Lifting flows

— Forced motion in free stream
* Wave flows

— Ship under steady motion in calm water

— Free motions of budy in waves

13.024 Numerical Marine Hydrodynamics 3

Panel methods can ultimately solve complex problems involving free motions
of forward moving vessels with lifting surfaces in incident waves. Jumping
right in to the formulation of such a problem, however, would be rather
overwhelming.

We will, therefore, start by formulating a simple problem and move on to
progressively more complex cases.
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Flow in Unbounded Fluid

Non-lifting body in unsteady flow
Unsteady incident

- /

Total potential: P = Q + ¢ —Ux

;

Free stream

Perturbation

13.024 Numerical Marine Hydrodynamics 4

Body advancing with speed U in an unsteady flow field
Body-fixed coordinate system.
Unit normal n, to body surface Sg, pointing out of fluid.
Reasons to solve this problem:
* Get pressure distribution on body
* Determine added mass
* Introduce techniques to be used with more complex problems
Separate total potential into:
» free stream potential
« incident potential excluding free stream

» perturbation from incident potential
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Body Boundary Condition

(No flux condition)

9P _
on

g—‘”:(Uf—ng))-ﬁ

n

0=

13.024 Numerical Marine Hydrodynamics S

The normal velocity of fluid must be zero in the body—ﬁxed coordinate system.

Using the decomposition of total potential into its components, it follows that
the normal velocity of the perturbation flow must be equal and opposite to the
the incident flow, which is given.
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Boundary Integral Equation

Green’s Theorem for field points on
body surface, Sy

S+
s S
1 dp dG
=—|([ |6Z=-p=|as
¢ 275”53[ on (pan}
13.024 Numenical Marine Hydrodynamics 6

The application of Green’s second identity transforms the boundary value
problem stated previously into a boundary integral equation. This facilitates
the numerical solution as the entire fluid volume does not have to be
discretized.

The integral over the part of the control surface at infinity vanishes because
the flow sufficiently far from the body is undisturbed. The integrals over the
connecting surfaces S* and S cancel each other out. So what is left defines the
potential on the body in terms of a source (G) and dipole (dG/dn) distribution
on the body surface. The strength of the source distribution is given by the
magnitude of the normal velocity on the body, while the strength of the dipole
distribution is equal to the magnitude of the potential on the body.

For this particular problem, d¢/dn is given from the boundary condition, while
¢ is unknown.
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Numerical Solution

Discretize integral equation and
substitute body BC

_09;
—-ZG Un, 5

J

27, + Z go i
System of linear equations for unknown¢;

13.024 Numerical Marine Hydrodynamics 7

The body is discretized into n panels, each of area A;.

The singularity distribution on each panel can be constant, or of higher order.
In any case, Gy is the potential at the control point of panel i, due the source
distribution on panel j.

Having a higher order distribution on each panel results in less panels needed
for convergence and leads to a more robust way of calculating the tangential
velocities on the body, if needed. More on higher order distributions later.

In the above system of n linear equations, the RHS is known from the body
boundary condition. The potential on each panel may thus be found by a
standard linear solver. The flow is hence completely specified.
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Hydrodynamic Forces and
Moments

1 [

] 30, 1 )
F-:—'IOZ —ét—+5V(DlV(Dl n. A

M =—pz(%+-;-vq>,. Vo, )(f,.xﬁ,.)A,.

13.024 Numerical Marine Hydrodynamics 8

From the potential and its gradient on the body, it is straightforward to
determine the pressure distribution and hence the hydrodynamic forces and
moments.

These forces are often linearized by assuming small perturbations about the
free stream.
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Lifting Flows

Forced motions in steady free stream

13.024 Numerical Marine Hydrodynamics 9

Lifting surfaces common in Naval Architecture include hydrofoils, rudders,
control fins, sailboat keels and sails, and catamaran hulls.

A special treatment is needed for such lift-producing bodies because the
potential flow solution to the problem as previously formulated would include
infinite velocities at the sharp trailing edge of the foil under angle of attack.

In order to ensure a smooth flow at the trailing edge, which in real life is
attained due to the presence § viscosity, the wake shed from the hydrofoil must
be modeled.

The problem examined here involves a hydrofoil performing small motions
about a steady forward motion. So in addition to the effect of lift, there is a
new element in the formulation of the boundary value problem. The body now
moves with respect to the coordinate system, which is translating with a steady
velocity, U.
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Wake Model

Thin free vortex sheet

Across wake:

« Continuous normal velocity
* Discontinuous potential (jump=A®)
e Zero pressure jump:

oA  JA@
=Y =y
at ox 0

(Bemou]li, linearized about free stream)

13.024 Numerical Marine Hydrodynamics 10

The wake is modeled as a free vortex sheet shed downstream from the trailing
edge of the foil. Mathematically this may be defined as a dipole distribution
on a surface Sy, of zero thickness.

The operator A denotes a jump in a quantity from one side of the wake to the
other.

Across the wake we have continuity of normal velocity and a jump in
potential. The pressure on both sides of the wake should be equal because
otherwise we would have infinite particle acceleration since the wake is
infinitesimally thin,

The wake can be shed either straight back, following the free stream, or it
could have each point follow the total velocity induced at its location by both
the foil and the rest of the wake. In general, however, the additional
computational load and stability problems do not justify the slight increase in
accuracy achieved by tracking the exact position of the wake.
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Kutta Condition

» Requires zero pressure jump at trailing edge
of foil.

* This is ensured by continuity of potential,
together with the condition of zero pressure
jump across the wake

(I)TE:body =@y ke

13.024 Numerical Marine Hydrodynamics 11

The flow past a lifting body cannot be uniquely determined unless some
additional condition is specified which sets the amount of circulation produced
by the foil. As previously formulated, (without the wake) there would be no
circulation and the velocity at the sharp trailing edge of the foil would be
infinite.

This situation may be avoided if a Kutta condition requiring tangential
velocities at the trailing edge is enforced. An alternate way of enforcing this
condition is to require continuous pressure at the trailing edge. In fact, this
condition is preferred here because it can be easily linearized about the free
stream.

The requirement of zero pressure jump at the trailing edge in the wake is
already satisfied as we saw before. Thus, by also requiring continuity of
potential from the body into the wake at the trailing edge, the Kutta condition
of zero pressure jump on the body is automatically satisfied.
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Forced Motions

Displacement about frame of reference
due to translation and rotation:

g(f,t)=5T(t)+gR(t)Xf

ET =(§1a§2’§3) ER=(54’§S’§6)

13.024 Numerical Marine Hydrodynamics 12

Since for this problem the body is not fixed with respect to the coordinate
system, we need to define its motions.

The rigid body motions in six degree of freedom can be fully described by a
translation and a rotation vector.

The displacement of any point on the body with respect to its original position
may be described in terms of these two vectors and its original displacement
from the origin.
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Body Boundary Conditions

Applied at exact body surface:

%:(Uf.*._a_é).ﬁ
ot

Linearized and applied at mean position of body
(assuming small body motions)

a_q_).zd_gl.ﬁ_*_&.

= (Ex7)+Ulgn, —&n, +n,)

13.024 Numerical Marine Hydrodynamics i3

The boundary condition is defined in terms of the body motions in order to
preserve the zero normal flux requirement.

This condition should, strictly, be applied to the exact position of the body
surface. This would require the re-discretization of the body surface at each
time step. Although some panel methods take this approach to the problem,
the solution becomes much easier numerically if the motions can be assumed
small and can be linearized about the mean position of the body.

The linear body boundary condition is derived by applying a Taylor expansion
about the mean body position and retaining linear terms.
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Boundary Integral Equation

Green’s Theorem for field points on

the body
s 1 s.
svl
aG
27r¢+” (p——-dS+” Ap—>dS = j G—dS
13.024 Numerical Marine Hydrodynamics 14

Green’s theorem is used once more to derive the integral equations.

As with the non-lifting case, the integral over the control surface at infinity
vanishes. The integral over the connecting surfaces that run over the wake do
not completely cancel each other, however, due to the discontinuity in
potential across the wake. Instead, we get a term involving an integral over Sy
of the potential jump multiplied by the dipole potential.

The problem can no longer be solved by placing panels only on the body. The
.wake also needs to be discretized.

267



Numerical Solution

Discretize and Fourier Transform
integral equation, using body BC

Mo 5@G,.
270, + ) 0,
Jj=1

N ote oG,
+ Z A(DJ Bi =
T N+ n;
Nbod)'

=Y, {iw[g} i+ & (% %, )|+ Ulgn, —£n, )

j=l

13.024 Numerical Marine Hydrodynamics 15

Due to the wake shed downstream, this problem has memory and thus the
solution depends on the flow at previous time instances. This means that the
solution has to be evolved in time, or needs to be solved by tanking the Fourier
transform and solving for each frequency component present.

The integral equation shown above is in the frequency domain, if the forced
motions are sinusoidal. Solution in the time domain would require the
numerical evaluation of the time derivatives.

The system of equations shown above are simply the integral equation at each
panel, with the body boundary condition substituted at the RHS.

There are, however, more unknowns than integral equations due to the extra
panels of unknown potential jump in the wake. The extra equations to close
the problem are derived from the wake condition of zero pressure jump.
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Numerical Solution

Wake Condition:

To be solved simultaneously with integral equation

atTE.... A¢wake = [(oupper = Dlower ]body
OA
in wake... la)AQk—U L =0
13.024 Numerical Marine Hydrodynamics 16

For a solution in the frequency domain, the wake condition is discretized and
yields one extra equation for each panel in the wake.

If the problem is solved in the time domain, the potential jump can be
expressed exclusively in terms of the potential jump at panels during the
previous time step. Instead of unknown potential jump on the entire set of
wake panels, the only extra unknowns would thus be a strip of panels
immediately downstream of the trailing edge of the foil. This reduces the size
of the matrix to be solved, at the cost of having to evolve the solution in time.

The wake condition involves the evaluation of spatial derivatives of the
potential jump. We will examine methods for doing this later.
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Hydrodynamic Forces and
Moments

Nyody

~ : do, 1 .
F=- U2 Vo Vo i A
pZ(tww, TV, co,)n, ,

i=1

N
- body 1 N L
M=—p2 iw(”i_U%"l'_V@'V(oi (%, x7;) A
pr ax 2
13.024 Numerical Marine Hydrodynamics 17

After having solved the flow, the calculation of the hydrodynamic forces and
moments is again a matter of integrating the pressure distribution over the
surface of the body.

For steady flows it is also possible to determine the lift and drag based on a

Trefftz plane integration:

l s/2 a(p
D=— AD—d
2p I 0z Y

—s/2
sI2

L=pU [A®dy

-s/2

where s is the span of the foil.
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Higher Order Potential
Distribution

¢(i) = 2 C; Bj(i)
B(3)=b(£)b(n)

<7
— 1 3 Y 3h, h,
— | x+ R <xX<——=
2h 2 2 2
1 3h? h h
- 3 - 3 o b(x)={ =] -x*+== —x <X
Bi-quadratic B-Spline: () hz[ n } 2 2
1 3, Y h 3h,
w2
13.024 Numerical Marine Hydrodynamics 18

In general, the potential distribution on each panel is not constant.

A B-spline representation, for example, represents the potential as a
summation with weight ¢; of all basis functions B; centered on each panel j. A
second order basis function is shown above. Note that the field point needs to
be converted into local panel coordinates for the evaluation of the basis
functions.

The spline coefficients c;, determine the amount of contribution from each
panel, and become the unknowns in the integral equations. Due to the overlap
of the basis functions in determining the potential at the center of several
panels, however, the unknown spline coefficients are still one per panel.

A consequence of higher order B-spline distributions is that end conditions
need to be specified at the edges of the spline sheets, so that the spline
coefficients may be uniquely determined.

Higher order singularity distributions require fewer panels to achieve
numerical flow convergence. Note that similarly, geometrical convergence
may be achieved faster if the surface is described not in terms of flat
quadrilateral panels, but by B-spline surfaces.
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Evaluation of tangential
derivatives

00, _ 0~ Ps
o& he

constant distribution:

S RPY:

13.024 Numerical Marine Hydrodynamics

higher order: ?2 = z i %, (5) b; (77)

19

As already seen, there is a need for the calculation of the tangential velocity on
a panel. This may be done by finite differences, and one example is shown
above. Of course, any other finite differences scheme could be used, provided

that it does not make the overall method unstable.

If the potential distribution is of higher order then the tangential velocities can

be found analytically from direct differentiation of the basis functions.

Note that the above derivatives are given in panel local coordinates. Since the
derivatives are usually required with respect to the global coordinate system, a

transformation is needed for each panel.
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Free Surface Flows

Steady ship motion in calm water

\ ;
\\‘ Q=p-Ux u '1'

Total potential: (P = QO — Ux

e N\

Perturbation Free stream

13.024 Numerical Marine Hydrodynamics 20

The evaluation of the steady wave resistance of a ship has always been of great

importance to Naval Architects. Three dimensional panel methods have the
ability to estimate this quantity without resorting to expensive towing tank
testing.

We will formulate the problem of a ship advancing steadily through calm
water, linearizing the solution about the free stream. The total flow is
therefore broken down into a free stream and a small perturbation flow
components.
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Free Surface Boundary
Conditions

Dynamic:
zero total pressure on free surface

dg . d¢p 1
= L v, vV =0
Pa p(at Uv—-+5Ve ¢+g§')

Kinematic:
particle on free surface remains there

(%+V<I>-V)z—{]=0

= wave elevation

13.024 Numerical Marine Hydrodynamics 21

Boundary conditions are required to determine the behavior of the flow near
the free surface, and hence uniquely determine the solution.

The dynamic condition requires the pressure at the free surface to be equal to
the atmospheric pressure, which will be taken arbitrarily to be equal to zero.
The condition is thus expressed by the Bernoulli equation above.

The kinematic condition requires that a particle on the free surface remains on
the free surface forever. This means that the material derivative of its vertical
distance from the free surface should be zero.
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Linearization about Free Stream

Kelvin boundary conditions

d¢ 09

ik AU § gt

o Va8
9¢ ;95 99
ot ox 0z

The free surface boundary conditions previously stated are non-linear and are
to be applied at the exact position of the free surface, which is unknown. The
numerical solution algorithm becomes much simpler and computationally
efficient if these conditions can be linearized and applied to a known surface.

The above linear conditions, also known as the Kelvin free surface boundary
conditions, were derived using a Taylor expansion about z=0 for small wave
elevations and slopes, and ignoring higher order terms.

The wave elevation can, of course, be eliminated by combining the two
equations, resulting in a condition involving only the perturbation potential
and its temporal and spatial derivatives.
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Boundary Integral Equation

0 6G
2mp=[[ |G- ds
3+SF on an
Take Kelvin wave source as the Green function

As shown in hydrodynamics review of this course,
waterline integral replaces integral over free surface:

2
2 = ﬂ[ ]dS u nj'{ a—g"—gaa—G-}—”x—dl
gl Ox Ox Jcosy
Y = flare angle
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Green’s theorem is used again to derive the integral equation, only this time an
integral over the free surface is needed, as well as over the body. Using a
Green function that satisfies the linear free surface conditions, however, the
free surface integral may be collapsed into a waterline integral. This means
that no panels are needed on the free surface.

One difficulty is that the first derivative of the very complicated Green
function is required, but this can be done numerically.

Note that this formulation of the integral equation relies on the use of the
linearized Kelvin boundary conditions. This is because Green functions
satisfying any other free surface linearization are not readily obtainable.
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Numerical Solution

Discretize Integral Equation and
Substitute Body BC
oG, U 2 oG, n
2re, +Z¢1 o —5

J

= UZ Gy + Z
J

jemt b cosy, cosyj

J

Linear system of equations for @,
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g jenL T ox h;cosy,
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Discretizing the integral equation, a system of linear equations is obtained for

the potential on each panel, as before.

Care must be taken in evaluating the waterline integral, since the value of the
potential on the free surface needs to be estimated from the potential on the

body, which is often discretized only below the z=0 plane.
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Wave Resistance

From Momentum Conservation

_ _pPg n,
RW—s[jpn,dS 5 igzcos;/dl

(Proof follows)
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The wave resistance of a ship may be found from the above formula after the
flow has been solved.

The pressure should include the quadratic term in Bernoulli’s equation, even
though terms of comparable magnitude have been omitted in the linearization
of the free surface boundary conditions.

If the quadratic terms are omitted, the resistance of full-shaped vessels is over-
predicted. The reason for this is that close to such bluff bodies, which is where
we are performing the pressure integration, the perturbation potential is
actually of the same order as the free stream potential, so the linearization is
not accurate.

Linearizing about a double-body basis flow, as we will see later, solves this
problem and the quadratic terms are not as important.
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Wave Resistance

Conservation of Momentum

tn

AEE— SF/
s,
8

a_ If [£ﬁ+V<D(V<D-ﬁ)}dS=0

dt

SpuUSEpUS,
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The proof of the formula given for the wave resistance follows from the
application of the momentum conservation principle inside an appropriately
chosen control volume of fluid.

Within the enclosed volume, the rate of change of fluid momentum vanishes.

Note that because of the radiation condition, the only surface at infinity where
the integrand does not vanish is far downstream of the body, at S_.
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Control Volume at Exact Position
of Fluid Surfaces

Using boundary conditions: ‘
D oD 6D
R, = |lpn dS=-p J{—nx +———-—]dS
Jonas=—elln 5

From radiation condition and Bernoulli:
2 2 2
__PE g Pri_(90)  [O2] (%
Ry =% Cj:§dy zsﬂ{ (6x) +(8y) +(az”ds

C, is the intersection of S with z=0
S, is the part of S_ lying below z=0
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Taking the exact wetted surface of the hull, the exact position of the free
surface, and S, as the control surfaces (all at rest with respect to the body) and
using the body and free surface boundary conditions, the only terms that do not
vanish are the pressure integration over the body wetted surface (which is
defined as the non-linear wave resistance), and the momentum flux and
pressure integration at infinity.

The fluid velocity in the x and z directions may be found from the Kelvin free
surface boundary conditions, and the fluid pressure from Bernoulli.

The resulting expression is an exact representation of the wave resistance in
terms of far-field quantities.
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Control volume at linearized
position of fluid surfaces

Using Kelvin boundary conditions and Bernoulli:
I .ol (9eY . (30 (3¢Y
- Sas+E ([ - 25+ 22| +] 22| |as=
ffonis-os]jc% +2g[ (227 (2] (2] 5=

After application of Stokes theorem:

Pg 2_ N, P8 (s P [ a9 ’ a9 ’ a9 ’
ds-£&8§ 2 e g L8 [rrg, L (f_|28) (22 4122
Hpn, 2 L: cosy 2 C-[; Y 2 -g [8x) +(8y * 0z as

Sy

RHS is equal to wave resistance, Ry, from momentum
conservation in control volume bound by exact surfaces
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Repeating the same procedure for a control volume bound by the linearized
free surface (z=0 plane), the body below z=0, and the same surface at infinity,
a similar expression is derived. This time, the momentum flux across the free
surface does not vanish because the normal fluid velocity at z=0 is not zero.
The Kelvin conditions are used to express the fluid velocities on the free
surface in terms of the wave elevation.

Finally, an application of Stokes theorem transforms the surface integral over
the z=0 plane to a pair of line integrals at the body and at infinity.

The line integral along with the surface integral at infinity are recognized as
the wave resistance as previously derived using a control volume bound by the
exact free surface.

An expression is therefore derived for wave resistance in terms of near-field
quantities, starting from the principle of momentum conservation. Comparing
this expression to the one derived from pressure integration, we observe that
they are similar, but the waterline integral terms have the opposite sign!!

This paradox is due to the inconsistency of retaining second order terms in the
definition of wave resistance, but omitting them from the free surface
linearization, as previously mentioned. As the beam of the ship approaches
zero, the waterline integral term vanishes and the two definitions are in
agreement.
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Free Surface Flows

Free Motions of Body in Waves

Zero forward speed

o Unsteady incident
‘1"—“:‘_‘_- 50) ] /
Total potential: P = @+ ¢

/

Perturbation
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The determination of the motions of floating bodies in waves is another
problem of interest to ocean engineers. Here we will examine the panel
method solution of a buoy in incident monochromatic waves. Solutions to
more complex problems with forward speed and multiple frequencies can be
easily obtained by a simple extension of this problem and the previous one
examined.

Since there is no forward speed in this problem, the total potential is divided
into the incident wave and perturbation potentials.
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Solution Method

System of Equations:  Unknowns:

* Boundary Integral * Potential on each
Equation panel

* Body Boundary * Normal Velocity on
Condition each panel

. ’Equations of Motion * Body motions
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So far the motions of the body have been prescribed, which resulted in the
body boundary conditions being completely specified. For freely floating
bodies in waves, however, the body boundary condition is a function of the
motions, which are unknown. The motions are connected to the hydrodynamic
forces through the equations of motion to close the problem.
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System of Equations

Boundary integral equation
dp dG| n
2 das + — L _p— =g
= '”Sa[ n an] [ ox (oax]cosy

Body boundary condition
dp 96 -
~Vé |
on ( ot ¢J "
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As before, the body boundary condition may be substituted into the integral
equation. This time, however, the body motions are unknown, so the integral
needs to be solved simultaneously with the equations of motion.
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Equations of Motion

ME+CE=—p ”[—+ —V- VCD]ndS

5=§T+ERXX (”lynz’”3)='-i
ET =(§1v§2’§3) (n4,n5,n6)=J"CXﬁ
5R = (54,55,56) M =inertia matrix

f = (,51,52, £, 54,55,56) C = matrix of restoring coefs
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The equations of motion balance the inertia forces and the hydrostatic
restoring forces with the hydrodynamic forces obtained from the flow solution.

A notation is adopted that merges the translation and rotation vectors so that
the equations of motion become a six-dimensional matrix equation, balancing
both forces and moments.
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Rankine Panel Methods

 Panels both on body and free surface
* Boundary integral equation becomes:

2 = JLB+SF [G%—f—w—aa%} ds

» Use Rankine source (G=1/47r) as elementary
singularity

* Boundary conditions determine potential and
normal velocity on free surface

» Linearize about basis flow (double body)
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Rankine panel methods distribute panels on both the body and the free surface.
They thus have a greater freedom in the free surface boundary conditions that
they can apply. This comes at the expense of introducing extra errors due to
the discretization of the free surface.

The integral equation retains the free surface term (without collapsing it into a
waterline integral as with Neumann-Kelvin methods) and thus has extra
unknown source and dipole distributions associated with the free surface
panels. These are found from the dynamic and kinematic free surface
boundary conditions.

Another advantage of Rankine panel methods is that they do not have to have
their solution linearized about the free stream, which is rather poor especially
near the ends of the vessel. Instead, they can linearize the solution about a
double-body basis flow, which produces more accurate results.
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Discretization Issues

* Distortion of the free surface
— Dispersion
— Damping
* Stability
— Spatial
— Temporal
» Radiation condition
— Truncation errors and domain size sensitivity
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A discrete free surface has a different dispersion relation than a continuous
one.. For finite panel sizes spurious wavelengths smaller than five panel
lengths are supported and need to be filtered out. Any damping of the
numerical method (i.e. Rayleigh viscosity), so that the radiation condition may
be satisfied, also affects the numerical dispersion relation.

For a convergent numerical algorithm the numerical dispersion relation should
approach the continuous dispersion relation in the limit of infinitesimally small
panel sizes. The numerical dispersion relation results in stability criteria, from
which required relations between quantities such as panel dimensions, Froude
number, time step, can be derived.

Another difference between the continuous and numerical free surfaces is the
truncation of the free surface. The condition at the edge of the computational
domain should be such that the sensitivity of the solution to the size of the
domain is minimized. One way of imposing the radiation condition so that
reflected waves from the edge of the domain are minimized is to apply
matching at some control volume around the fluid domain which contains a
flow satisfying the radiation condition. An alternate (easier) way is to use a
numerical beach where the kinematic boundary condition is modified to allow
a mass flux through the free surface (Newtonian cooling), thus damping
wavelengths less than about twice the extent of the beach.
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Linearization about basis flow

¥ ¥
=—=0 on Sg

%az

basis flow v

I

Total potential: D =W+ ¢@-Ux

\

free stream

wave flow << ¥
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The Neumann-Kelvin linearization assumes that the perturbation potential is
small compared to the free stream. This assumption is not very good,
especially near the bow and stern of a ship where the perturbation velocity is
equal and opposite to that of the free stream.

A better linearization for ships with forward motion is to divide the total
potential into the free stream, perturbation, and basis flow potentials. The
basis flow is usually taken to be the solution past the hull with the free surface
treated as rigid walls. Since this problem can be solved by taking a mirror
image of the hull below the waterline, this basis flow is also known as the
“double-body” flow.
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Basis Flow Solution

After discretization, solve basis flow
as shown for bodies in unbounded
fluid.

Body Boundary Condition:
¥

—=Un,

on
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The double-body basis is a special case of a problem we have already seen. A
stationary non-lifting body in an unbounded free stream is simpler than all the

cases that we have examined thus far.

The solution is obtained after the body is discretized and before proceeding to
the wave flow. Note that the panels on the free surface are not needed for the

solution of the basis flow.
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Wave Flow Body Boundary
Conditions
) 5 .
9p _90 -
on ot
linearized about basis flow, for small motions:
0P _ % d‘fj
=) |"Ln +&m
o 2|
(momy,m) =7 (mymymy)=(7 -V U ~V'F)
(ny,ng,ng) = XA (m‘,,ms,mé):(ﬁ~V)[xx(fU—V‘P)]
13.024 Numerical Marine Hydrodynamics 37

Since the forcing due to the free stream is accounted for in the basis flow, the
body boundary condition for the wave flow component of the solution includes
only the normal velocity due to the body unsteady motions.

Taking a Taylor expansion about the mean body position, and ignoring higher
order terms, a linear body boundary condition is derived. As before, the
combined translation/rotation vector is used to describe the body motions.

The m-terms provide a coupling between the basis flow and the unsteady wave
solution, and their evaluation is important, especially near the ends of the ship.
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Wave Flow Free Surface

Boundary Conditions
linearized about W and applied at z=0

Dynamic

Jdo . 09 v 1
—-U—=+4+VV¥ - Vp=-g{+U—--V¥ - V¥

dt ox v=-8¢ ox 2

Kinematic

2
ot ox 0z 0z
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The free surface boundary conditions are linearized assuming that the wave
flow is small compared to the basis flow. As with the Kelvin condition, these
linearized boundary conditions are applied at the z=0 plane.
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Numerical Solution

For wave flow, To obtain:
simultaneously solve:

* Boundary integral Potential on body and
equation free surface

» Kinematic FSBC Normal Velocity on

» Dynamic FSBC body and free surface

* Body boundary Wave elevation

condition

Body motions
* Equations of motion
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Rankine panel methods do not have the free surface boundary conditions
satisfied automatically from the choice of Green function, and hence they need
to be solved simultaneously with the integral equation, equations of motion,
and body boundary condition.
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Non-Linear Methods

 Higher order free surface boundary
conditions

* Body-exact formulations

 Iterative linearization about a wave solution
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* There are cases when the linearization of the free surface conditions is not
sufficient. Computation of higher order solutions is essential for some
problems such as drift motions, slamming, etc. It is possible to use Rankine
panel methods to solve the second order free surface boundary condition, but
this would, in general, no longer involve a system of linear equations. The
solution would therefore need to be found using some sort of non-linear solver.

* Body-exact methods discretize the body at its exact position at each time
step, thus eliminating the error associated with the linearization of the free
surface boundary conditions for large body motions. This can be very
important, as seen from the inconsistencies that result when the body is only
discretized below the z=0 plane.

» Taking the linearization about the double-body basis flow one step further, it
is possible to obtain the linear solution and linearize the free surface conditions
about that.solution. Linearizing the flow iteratively about the previous
solution, the full non-linear free surface conditions should be satisfied when
convergence is reached. This approach is practical only for the steady flow
problem, but even for the unsteady problem several methods exist that
linearize the flow about flows such as the steady wave solution or the incident
wave. With these methods it is usually necessary to discretize the body and
the free surface after each iteration, thus adding to the computational load. An
exception is for raised panel methods, discussed later.
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Raised Panel Methods

Panels above z=0 plane

I SaNy Ih

* No free surface discretization necessary at each iteration

* Influence coefficients of free surface panels to body
collocation points calculated only once

* Due to distance, h, the velocity field induced in the
fluid domain from each panel is smoother
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One successful way of implementing the body-exact iterative linearization
about a basis wave flow is by using a “raised panel” method. Such methods
place singularity distributions at a distance above the z=0 plane, with the
collocation points still on the free surface.

The benefits of such methods are that the free surface panels do not have to be
re-created at each iteration, and the free surface to body influence coefficients
need only be calculated once. The method also has nice numerical properties
since the infinite velocities which are self-induced on each free surface panel
are no longer in the fluid domain. In addition, the process of linearizing the
flow about the previous solution is made more straightforward since the flow
field at the last iteration is always defined at the next estimation of the position
of the free surface.
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Strip Theory

Derivation of:
» Hydrodynamic Coefficients

» Exciting Force and Moment

Assumptions:
* Linear and harmonic motions

* Viscous effects negligible
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Potential Flow Decomposition

* Time-independent and time-dependent components
®(x, 5, z:1) =[-Ux+ ¢ (x, y, 2)|+ 8 (x, 3, 2 )™

* Incident, Diffraction, Radiation components

br =9, +0p+ 24,9,

-Ux+¢s is the steady contribution with U the forward speed of the ship, ¢ is
the complex amplitude of the unsteady potential, and w 1s the frequency of
encounter in the moving reference frame. It is understood that the real part is
to be taken in expressions involving el

¢y is the incident wave potential, ¢y, is the diffraction potential, and ¢, is the
contribution to the potential from the j® mode of motion (1=surge, 2=sway,
3=heave, 4=roll, 5=pitch, 6=yaw)

The decomposition of the potential into the above components is convenient
for the linearization of the boundary conditions, as will be seen later.
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Linearized Boundary Conditions

 Steady Perturbation Potential

: d
~ Body BC: —[~Ux+¢,]=0
(applied at hull mean position) a n
2
— Free Surface BC: U2 d ¢s +g a¢s =0
(applied at z=0) ax2 aZ

In order to linearize the boundary conditions it is assumed that the geometry is
such that the steady perturbation potential ¢g and its derivatives are small.

By assuming that the oscillatory motions are of small amplitude, the time-
dependent component of the potential, ¢, and its derivatives may also be
considered small.

Under these assumptions the problem may be linearized by disregarding
higher-order terms as well as cross-products on both ¢g and ¢y.

The above expressions for the linear boundary conditions were derived from

the exact body and free surface conditions by including only linear terms and
applying Taylor expansions about the mean hull position in the body BC and
about the undisturbed free surface (z=0) in the free surface BC.
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Linearized Boundary Conditions

Incident and Diffracted Potentials

: a¢, d
_ Body BC: ¢ 9% _,
(applied at hull mean position) an an

2
— Free Surface BC: . 0 P
(applied at z=0) [[l(l)-Ua} +g£:|¢ =0

where ¢ is ¢; or ¢p,
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Linearized Boundary Conditions

 Radiation Potentials
0
— Body BC: a¢j .
(applied at hull mean position) on =1ian;

— Free Surface BC: .
(applied at z=0) !

3 Y P
~-U—1|9° —0°=0
ij Z +gaz¢’

U ,
| b= +—p
where: ¢, = ¢;‘ for j=1234 > ’

PR
10

It can be shown that the radiation body BC is given by:
09,

n

=ia)nj+Umj

The m-terms provide a coupling between the basis flow ¢p and the time-
dependent potential.

= Vs _, - Vo,
(”llvm2’m'3)=-(n'v)_‘U— (m4,m5,m6)=—(n~V)(xx_U_)

(my,m,m;) =0
For our case, where: =— we have:
% Ux (mums»ms) = (0,?13,—7!2)
og;
Let ¢; ¢ +—¢, , where ¢J is speed independent and satisfies —- —zanj

on the body, in addmon to the Laplace equation and free-surface and mﬁmty
conditions.

It then follows that: @; =0 for j=1234

and o =¢)
9 =—0}
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Pressure Linearization

e From Bernoulli:
N a iax it
p=—p(l(0-—U$ € _pg(ga+£4)’“{5x)e

buoyancy term ignored
(included in hydrostatic restoring coefficient)

Hydrodynamic force and moment:

H; = —p”.s nj(iw—U—aa;)ngds

(integration over the mean position of hull)

Similarly to the boundary conditions, the pressure is expanded as a Taylor
series about the undisturbed position of the hull and the expression is
linearized by neglecting quadratic and higher order terms in ¢s and ¢r.

The hydrodynamic forces and moments, H, include the exciting forces as well
as the forces due to the ship motions (added mass and damping forces). They
do dot include the hydrostatic restoring forces which are included elsewhere.
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Hydrodynamic Forces
6
H,=F;+YT{,
k=1

— Exciting Force & Moment

Fy==p[[n, (za) U= }¢,+¢D)ds

— Radiation Force & Moment
. d .
Ty =-p[], n,-(lfv-—U-g}kds =P A, —ioB,,

— Need A, B, F to get equation of motion

T, is the hydrodynamic force in the jth direction, due to a unit oscillatory
displacement in the k' direction.

The real and imaginary parts of this force is proportional to the added mass
and damping coefficients respectively. These coefficients, along with the
exiting force, will be expressed in terms of integrals of the sectional (2D)
coefficients over the length of the hull.

The equation of motion of the ship will then be fully specified:

z[_ M1k+A +la)B]k+C]k];k
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Radiation Forces

e Variant of Stokes’ Theorem
‘UnjU%%ds=U£mj¢ds‘—Ué[nj¢ di

* From which:
Ty =—pio[ ng,ds+Up|[ mg.ds-Up jCA n,@.dl
;.W—/
Ty
* Use the decomposition of the radiation potential to
express T, in terms of speed-independent terms

In deriving the variant of Stokes’ theorem, a small angle between the waterline
and the x-axis is assumed. S is the hull surface forward of the cross section
Ca.

As we did for the radiation potential, we can divide the hydrodynamic force
into speed-independent and speed-dependent components. The speed-
independent components are defined as follows:

0 A _ 0
]k = pza)j n;p,ds Ly =—pi chA n;@.ds
Then, using the properties of the radiation potential, we have:
for j,k=1,2,3,4: for j=1,2,3,4:
U u U’
U Ty=Tp t— T° 4 ——14
Tjk =T]‘Z :‘1 s s pt i0 s~ o° 73
i@ u v, U
A
Ty =T ‘57}02 +Ta;‘f6 e
for k=1,2,3,4: and finally'
U U,
_ 0 0 A
T, =T _.LLT;Z v —t T =T + Taa wtss e t53
02 U, U,
T6k _T60k U Tz(;: U 6Ak Teo = T(’% TO Cl)t:6 w* t62
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Strip Theory Approximations

* Length >> Beam, Draft

ds =dédl =Ty, =—pio| [n¢dld¢ = [1,d¢
LC, L

d d d
_<<___’_
ox Jdy oz
n,=N, (j=234)
<<n,,n, ={n. =—xN. N: 2D normal
" 2/ ’ ? n: 3D normal

ne =xN,

d
vl =
@ >> (ax]

The above approximations are all consistent with the trip theory assumption of
a long and slender ship.

The last condition, which states that the frequency of encounter is high,
requires that the maximum wave length is of the same order as the ship’s
beam. This enables us to simplify the radiation potential free surface
condition so that ¢° is indeed speed-independent as assumed.

Under these assumptions, the 3D Laplace equation and the boundary
conditions reduce to the 2D Laplace equation with the corresponding 2D
boundary conditions.
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Radiation Forces 1n terms of 2D
hydrodynamic coefficients

T, =I’22d‘f Tg= J't”df T, = J‘t«df
T =Ta=[¢r,df  T3=To=-[étd¢ T3 =Tg = [r,dé
Tg = [E1,dE Ty = [E'1,dE T4 =To = [£n,dé

All the rest T, =0, for ships with lateral symmetry

where: ¢ =—pio [N g)dl=w'a; ~iah; for j=234
CX

Ly = _piij2¢:dl =0’ ay —iwb,
CX

From the assumptions of strip theory, the two-dimensional radiation potential
at each section, y,, is equal to the three dimensional potential ¢,° for sway,

heave and roll:
gy =y, for k=234

In addition, from the hull condition, we have for pitch and yaw:

¢50=_x‘//3 and ¢2=XW2

and @ <<d! for k=2..6

The above relations were used in conjunction with the expressions for the
sectional radiation forces and the strip theory approximations to get the zero-
speed radiation forces in terms of the 2D forces.

So from all the above, and from the relation between the speed-independent
and speed-dependent components of the radiation force, we have all we need
in order to express the added mass and damping coefficients in terms of the
sectional two-dimensional added mass and damping.
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Incident Wave Exciting Forces

Fl= _p”nj(ia)—b’%},ds
§ =

¢1 - lga e—ik(xcosﬁ—ysinﬂ)ekz
@,

F] =—pia, [[n,¢,ds
S

(Froude-KTriloff force and moment)

o: wave amplitude

k: wave number

B: heading angle

®y: wave frequency, related to frequency of encounter by @, = w+ kU cos 8
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Diffraction Forces

FP =_p”nj(ia)—U-E%-)¢Dds
» Using: s

— Stokes’ theorem
— Hull BC
— Green’s 27 identity

we get'

\a¢l pU ¢ 404,
rp=pff{ ot [oas e B0 o e

The same form of Stokes’ theorem that was used for the radiation forces
earlier is applied to the diffraction forces.

The hull condition for the radiation potentials is then used to get products of
potentials and normal velocities.

Green’s identity, which involves such products, is then used to eliminate the
radiation normal velocities (they get substituted by the diffraction normal
velocities)

The hull boundary condition is then used to replace the diffraction normal
velocities by the negative of the incident wave normal velocities which are
known.

Use may then be made of the relations between the speed-independent and
speed-dependent components of the radiation potentials to get an expression
involving only the speed-independent components.

Finally, the incident wave potential, which is a known quantity, may be
substituted.
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Excitation Forces in terms of 2D
sectional forces

F,<<F, k=2..6

F,=paf(f, +hj)d§+pa%h,‘ j=234
U U .,
Fy= 'pal[g(fs + h‘s)*'l_whj]dg _pa,’Ta_)xAhs
F= paf &0, +h)+ o i+ pa bt
where: £,(x)= e [N £™™%edl (2D Froude~ Kriloff )
c,

h(x)= w,e ™’ J(iN’3 — N, sin B)xe®™Pe"pldl (2D diffraction)
c,

The excitation forces in terms of the sectional Froude-Kriloff and diffraction
forces are derived from the previously derived expressions by making use of
. the strip theory approximations.

309






