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INCOMPRESSIBLE FLUID MECHANICS BACKGROUND

V:{u+fv+ﬁw

Conservation of Mass, Continuity Equation

divV =V -V =0
@__*_Q"i 8_’(1}_0
or Oy 90z

Newtonian Dynamics, Navier-Stokes Equations

pv oV o _ - 1 "
—=—+ V- -V)V=--VP 2

DL = Bt +((V-V) p +vVV
P is the dynamic pressure. The total pressure, Pr, is the sum of the
dynamic pressure and the hydrostatic pressure, -p g z, where z is positive

- upwards. Pp =P —pgz.
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PIV Example

1 and v can be measured, so gg— and % are known.

a_w_ Ju Ov
9z  Or Oy

If PIV is done on multiple planes inside a fluid domain, then %% is known

over the whole domain. At a rigid boundary, w = 0 and, in principle, w
can be found anywhere by:

w:/Z 8—walz

boundary Oz

Example

In a domain bounded by 0 < 2 < 4, u = (3¢ — ze* — 3)sinz and v = 0
over a range of x and in 0 < z < 2. In this sub-domain,

g% = (3e* — ze* — 3) cos(x)
—g—j = —(3e® — ze* — 3) cos(x)

z 0
w=/0 —a%dzz—[362—3—zez+ez——1—3z]cos(x)

w = [OZ %%dz = — [4e" — 4 — ze® — 3z] cos(x)
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dw/dz and w(z) atx = 1
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A More Interesting PIV Example

Fhgic

Consider the following flow for z > 0 in a range of x and y. Of course, in
an experiment you would not know the mathematical formulation. Rather

you would just measure u and v over a set of (x,y,z) points.
u(z,y,z) = (360’1" — 3cos z) siny cos T

v(z,y,2) = (360'12 — 3cos z) Cos Y

The = and y derivatives of the velocities can be computed numerically
from the measurements. If the experiment were done well, they would

have values according to the following formulae:

0
é-z_ = — (360'1" — 3cos z) siny sin
0
a_z - — (360'12 — 3cos z) siny
Then, the continuity equation is: _Bw = ——aﬁ — Qz_;
0z Jor Oy

The experimentally determined values would have the values given by:

dw

o = (360'17' — 3cos z) sin y(sin z + 1)

Integrating %—’;’ from 0 to z at a prescribed value of (x,y) would give w(z)

there. The values obtained would obey:

w = (30 e%* — 30 — 3 sin z) sin y (sin z + 1)
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dw/dz and w(z) at x=1, y=1
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AVERAGED NAVIER-STOKES EQUATIONS

+ o'

<

V=

W2) o [743) 9] (7 +7) =29 (P ) +09° (79

Take Average of above equation:

W 7)) V(717 = #mmﬁ

(V+) -] (V+0) = (V-V)V + (- V)i

Thus, the Reynolds-Averaged Equation is:

ov =S 1_ =
T + (V- V)V + (v V)’U':—;VP*I-I/VZV

The "Reynolds Stress Term” is:

>f ou o’ o’
v/ — el 127 -
(v )v Z(u8$+v3y+w8z)+




THE PRESSURE EQUATION FOR AN INCOMPRESSIBLE
- FLUID

Start with the Navier-Stokes Equation

~ 4 (V.-V)V =—--VP 2y
5 +(V-V) p + vV

Take its divergence.

Because V- V = 0, the only non-zero terms are:

div (V- V)V = —%VQP

Working out the details of the LHS and interchanging the LHS and the
RHS results in: _
8u>2 (8’0)2 (8w)2 Ovou _Owodu _Owdv

— — — 2—— +2—— +2——
oz Oy 0z + + +

1 .,
—;V P”( Oz Oy Oz 0z Oy 0z

oz) " \oy

2 2 2 o
V2P=—p{(au) +(ap) +(97“3> +2?38—u+28—w8—“+23—w@-}

The pressure, P, satisfies Poisson’s Equation driven by products of the
spatial derivatives of the velocity. This is different than the common
Bernoulli Equations because here the flow can be unsteady and rotational.
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The Vorticity equation

vorticity = w = curl V=vVxV
Start with the Navier Stokes equation:

‘7 = = ]. —
o +(V-V)V = —VP +vV?*V
ot p

Take the curl of this equation, term by term:

%—?+(V~V)w+(w-V)V:VV2w
Dw ~ 9

The first term on the right hand side is the rotation and stretching of the
vorticity by the non-uniform velocity field.

12
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Inviscid Fluid Mechanics, Euler’s Equation

Set the viscosity, ¢ and the kinematic viscosity, v to zero. Apply these
“settings” to the Navier Stokes Equation.

DV oV 4 . 1
= = 4 (V-V)V =_=
o =g T (V) VP

ou ou ou ou 10P
U + Ve W = — =

ot ' 8z oy 8z  pox
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Bernoulli Theorems for Inviscid Flow

Theorem 1 - Irrotational Flow

Vector Identity

V-V)V = —V(|V| )=V x(VxV)= —V(|17'|2) -V xw

For Irrotational Flow, V= V¢ and V X V=0

8V¢+VH V(g¢+H)—O
o¢
5 TH= f(t)

~ The function f(t) can be absorbed into ¢ by letting ¢ = ¢’ + [ f(t)dt and

V=v¢.
=~ + (1) so, %‘?;—jLH 0

8¢ qu’
ot

Finally rename ¢ as (,b.

o

5t +H=0
Remember that the total pressure, Pr = P — pgz.

9 1o Pr |
5t (V)+7+gz—0

15
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Theorem 2 - Steady Flow

0

1 -
5 Vo + 5V (w

. 1
2)—wa+;v13=o

%vm\m—x?xw:o

Thus, for steady flow:
Vxw=VH

Streamlines and vortex lines are perpendicular to VH.
Along either a streamline or a vortex line, H is a constant. So on any one
of these lines,

1 - P 15 P
H = §(V)2 + re §(V)2 + 7T +gz = c9nstant

If the flow is both steady and irrotational, H is the same everywhere
because VH = 0.

16
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Vorticity Dynamics and Kelvin’s Circulation Theorem

Circulation =T = }(17 dr = /Sw- ds

DV 1 .
—— = —-VP+vV?
Di pV + vVeV
Identity for an incompressible fluid: VWV =—-Vxw
=id = —EVP — VWX w
Dt p

Following a closed material curve,
dr DV / 1
d¢¢  J Dt

Kelvin’s Circulation Theorem

In an inviscid fluid, %F{ =0

r(t,) r(t,)

pathlines

Corollary: In an inviscid fluid with no circulation (such as starting from
rest) the circulation remains zero.

17
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Practical Implication

In a high Reynolds number streaming flow, fluid which has not passed close
to a boundary or a free surface has negligible vorticity.

Therefore, in high Reynolds number streaming flows, vorticity is limited
to boundary layers, separated zones, and wakes.

Concept of Vortex Lines

—_vortexlines ~~ __—
/
—

S —

This line represents the vorticity in
this area which is the circulation
around its

boundary

Each line represents circulation around an area which is the same
as the vorticity inside the area.

w=curl‘7=VxY7

Therefore: divio =V -w =0

The vortex field is solenoidal. Vortex lines are continuous. They can have
curves and turns,but they cannot have ends in the fluid.

18
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Potential Flows and Mostly Potential Flows

For an irrotational fluid V x V = 0

This means that there exists a velocity potential, ¢, such that,

V=Ve¢

For an incompressible fluid V - V=0

Thus, V - (V¢) = 0

Vip=0

For a completely potential flow, the velocity potential satisfies Laplace’s
equation.

For an incompressible flow that is “nearly” irrotational except in bound-
ary layers and wakes, the flow outside these boundary layers and wakes
is approximately described by a velocity potential that satisfies Laplace’s
equation.

21
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Green Functions, Green’s Theorem and Boundary Integral Equations

The following development is for three-dimensional flows. The development is
similar for two-dimensional flows except that two dimensional source functions
are involved and the dimensionality of some integrals and associated constants
are different.

Green’s Theorem

If ¢ and 1 both satisfy Laplace’s equation (V¢ =0, V%) = 0), then:
/1 o0
s on

Green Functions A three-dimensional (£, 1, () space is considered with a “sink” at
location (z,y, 2). The ”sink” has the velocity potential v/,

_ 1 _1
V@ —82+@y—n2+(z—-¢? r

where: r = /(x — £)2 + (y — 1)? + (2 — {)?

oY
¢5ﬁ —

]dS:///V[qsv?zp—w?cp]dV:o

Vs

Importantly, V2?1, = 0 both for the differentiations done in (£,7, () space as well
as for the differentiations done in (z,y, z) space. The following development can
be formulated either way and we will choose to differentiate over (£,7, ().

A Green Function, G is:

G = 'Ips(x, y’ z? f’ 7’7 C) + ’lpr(x, y7 Z, é" 777 g)
where, V2¢, = 0 in the fluid domain, and (z,y, 2) is called the point P.

~LUID

22



FNEgoo( 2)

If P is outside the fluid domain, the bracketed terms on the right hand side in
Green’s Theorem are zero. However, if P is inside the fluid domain, V21 # 0 at
P. Then, if P is enclosed by a small sphere of radius ¢, which is excluded from the
fluid domain, Green’s Theorem applies in the modified fluid domain. However,
now the integrals include an integral about the small sphere.

X (\& n

P

OBIECT FLOID

oG 0¢
//S-{-sphere [ m 57—71] dséﬂ%c =0

oG —1
//Sphere fls%ds = —¢[P(z, v, z)]—62— dme = 4w p|P(z,y, x)]

// [d)_ ‘G } ds¢ ¢ = —4mP[P(x,y, 2))

If P(z,y, z) is on the boundary, the integral is not defined. However, if we replace
the real boundary by one which has an infinitesmal hemisphere syrrounding P,
the Green Function integral is zero because the functions have no singularities in
the revised fluid domain.

n
P
r r=g
[~ Ly :
d__J
dﬂ O)r\

oG ¢
//S+hemzsphere [ O Ga ] d8§,n,c =0

oG -1
//hemisphere ¢%d8 - —'(}S[P(il?, Y, Z)]—€-2- 2me = 27T¢)[P(£L‘,y, 113)]

// [Cﬁa—n _¢¥? } dsg¢ = —4m[P(,y, 2)]

23
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Putting the preceding parts together, if a closed fluid domain of surface S is
considered with 7 being the outward normal vector (out of the fluid) and 7 is
taken as G with proper exclusion of the singular point of G when (z,y, z) is inside
the domain or on its boundary,

0 (z,y, z) outside S

/s [¢_ —Go- ] dS = { —27m¢(z,y,x) (z,y,2)on S
—4r¢(z,y,z) (=,9y,2) inside S

The integral is over the closed area in (£,7,(). When the singular point is on the
surface, an infinitesimally small circle surrounding the singular point is excluded
from the integral.

24
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Example of method of solution

Generate integral equation on surface of an object in a uniform flow.

Y,

Suppose uniform flow onto an object is known
%g is known.
®=-Uz+ ¢
Boundary condition: - =0,
~Ui-i+%2 =0, =Ui-#i
S
/i [¢%§ ~GUi- ﬁ]d: -

//Szb%gd5+27r¢://sGU%-ﬁdS

Right hand side is known in integral equation for ¢ on boundary.
Solve for values of ¢ on boundary (panel methods).
Then ¢ and %ﬁ are known on boundary.

Green’s Theorem then gives ¢ in all space.

25



Interpretation of Boundary Integral Equation
in terms of source and Dipole Layers

/) {L%G -1 QE} ds=1{" (z,y, 2) outside S
S 47 On 4" On | ¢(z,y,2) (z,y,2) inside S

“Inside S” means inside the fluid and outside “S” means outside the fluid.
G is the potential of a ”unit sink” and -0g/0n is the potential of a unit
dipole.

The Green’s Theorem integrals are integrals of sink distributions per unit
area of (1/4m)0¢/0n over the object and of dipole distributions of strength
per unit area of ¢/4m over the object. ¢

The sinks / %

Consider the effect of a unit sink.

n 1 1 1
@ p=-, V,=—, influx = —4nr? = 47
r 72 r2

Now, look at the small patch of area A on the surface:

V.
6+S SinkK F’C?'('CL)

} B-Vs

B is the effect of the integrals on the remainder of the object. Call the
sink strength per unit area o. Total sink Strength on the patch is c A.

Net influx, based on the velocities is 2AV.

24V, = dnrc A 2V, = 4no

26



2V; is the jump in normal velocity. This must equal the normal velocity,
0¢/0n in the fluid at the boundary since V = 0 inside the object.

9 _ . _19¢
on g Jd47r6n

Now consider an infinitesmal dipole patch of strength p

= ‘/:9;‘_/;/—"'0_‘: /a-/(
le ™ omene (e B
T Frr 1 = -alf £ Ve loc ity

Inside the infinistemally thin dipole layer of thickness ¢,

_

Y 4 ¢ in fluid ~ Pinside object = 4TH

since:  Pipside object = 0»

1
Pin fluid = 47w B = Z;qbin fluid

27



Kelvin-Neumann Problem
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The Kelvin—Neumann Problem

oG

= 4 //sl+52+53 [ an b-n—] S

. ¢ is the perturbation potential (does not include —Uz).

The integral over S, which is the part of the ship hull below the waterline
is of the same form as a Green’s theorem or “panel method” integral for
any finite size body, except here the top is open.

¢ and G decay with distance from the ship fast enough for the integral
over S3 to vanish.

The integral over S5, which is the free surface external to the ship is
special. We consider it here and call it ¢,.

$2 = 47T//52[ 5 - —]dzdy

Since n is a unit vector in the z direction on the mean free surface,

//S[ ol —]d:cdy

On the mean free surface, %f = —U?zg—i? and we choose G (the Kelvin-
Neumann Green function) such that it satisfies the same boundary con-
dition, %¢ = —U22¢

9z g Ox2

Then, applying these boundary conditions, ¢, becomes,

102, 32¢ a?a

1 U? oG
br=-g- | . 3= G5 - 452 dody

29



Now, the integral over = can be done. The contributions at x = %00 vanish
so the result is:

1U2 oG

4r g fore[ Oz Oz

by = 0 aG] 1 U? aﬁ{ o9 8GJd

dy — ——— Y Sl
Y g Oz Oz

The curve of the waterline is called C, with the part forward of the max-

imum beam called Cy and the part aft of this is called C,. Consider the

integrals taken along C in the counterclockwise direction. Then, dy is

positive on the forebody (Cf) and negative on the afterbody (C,).

2
4o LU [G@ G

or -5_:1:—] 4y

If v is the vector in the horizontal plane that is perpendicular to the wa-
terline and pointed out of the fluid into the ship, and d¢ is the differential
of arc length along C, along the waterline dy = —v,d¥¢, so,

// 1U2/[G8¢ oG

Y ==21dS — — 2 -
an ] S 47 Oz Oz
Now, consider a potential function, ¢’ defined in the region bounded by S;
and S;. In other words, ¢ is some function of space such that V2¢' = 0
in the region where it is defined outside the actual fluid. The boundary

condition we impose on ¢’ on Sy is the same as the one we impose on ¢ on

: ¢’ U2 8¢/
Sy. On S; we impose ¢' = ¢. '8% = _?52% on S

47rg

} vydl

In the fluid region,

1 Gd)’ ,0G

7//(51+s4){ on' 5}?] a5
n’ = —n pointed into the fluid on §; and n’ is a unit vector in the z
direction on Sj.

Call the contribution to ¢' from the integral on S; by ¢}.

,0G 1 U? 82¢’ 62G
b= [ ) |62 - 95 awty= -2 [ [ |05% - 055 wwas.

g LU
2"57//54&:[ 5| way

30
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Carrying out the integral over x gives,

1 U? o9 _ 9C 1 U? 8¢ ,0G
fore a aft B dy

) L e ™ e e L P

, 1 U? ¢ ,0G 1 U2 ¢ ,0G
Y=y c[ o~ aszy g [G%‘ a]”wd’v’

6¢’ ,0G 1 U2 5(,75' ,0G
471'//31{ an’ ]dS’ 47rg [ 8—x—¢_}

102, [.,0¢ OG
47r/fSI[G—+¢ }dSqLZ%— {GE—qs }I/xdf

To this, we add the equation for ¢ derived before:

47r//sl[a———¢—] as— LU [GQ?— %]yxdz

on 4T g Oz
The sum is:
. O¢ 8(15 1 _U_ op O¢
¢= 471'//51 { Bn}ds 4 g G[@x 81:} wdt

= [%% + %} is the source (actually it is a sink) strength o.
The normal derivative of Zl;qﬁ jumps at the interface by the source strength,
o. The tangential derivative of ¢ is continuous across the interface because

¢ is continuous. —‘é ¢ jumps across the interface by the jump in the normal
derivative times nm Therefore,

gb://SIGGdS—U?Z/CGanvI,dE

31



The Kelvin—Neumann Green Function

The Kelvin Neumann Green Function, G¥(z, y, ) is the velocity potential
for a source located at (a,b, ¢) and moving at speed U and which satisfies
the linearized free surface boundary condition:

Gt (z,y,0) +vG* =0, v= 5,95
This function is:
GHz,y,2) = —-1-+—1—+
Y - r r
v /2 oo e¥(2+9) cos[k(z — a) cos 0] cos[k(y — b) sin 6)
7 Jo d@}g kcos?f — v d+

w/2 2
4u /0 / ez O sinly(x — a) sec 6] cos[u(y — b) sin @ sec? 8] sec? Hdf
where: |

r?=(z—a)’+(y—b)’+(z—c) ri=(z—a)’+(y—b)*+(z+c)?

32



Source Only and Dipole Only Distributions

HYPOTHETICAL REAL
FLUID FLUID
DOMAIN DOMAIN
n
S o __39
n= on  On’

¢ is the velocity potential in the fluid.

¢ is a function that satisfies V2¢' = 0 in the region inside the object.

For a field point in the fluid domain, the following equations apply:

=$//G dS——//qS——dS

47r//G dS——~//¢—~—dS

:i}{//G 4//¢_d5

o= [0 (5o 455 as -1 [ [~ Foas

33
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Suppose ¢’ is chosen as the harmonic function whose values on S are the
same as ¢. The hypothetical interior flow would have the same tangential
velocity on the object as the real outer flow. Then:

-Li/e (3¢ a¢') as

This is a representation for ¢ in terms of surface sources only.

This representation does not apply to lifting ﬂows since they have wakes
across which the potential jumps.

Now consider the case for which ¢’ is chosen such that on S, ‘%g = —%Z—:.

The normal velocity is continuous across the surface for this case. Then:

¢—~—//¢ #) —~ds

This is a distribution of dipoles on the object surface S.

A2 TN
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Green’s Theorem in Two Dimensions

For two dimensional flow, the source potential is In 7 and the Green function
becomes:

G(ZL‘, yaga 77) =lnr+ Tﬁr(w,y,ﬁ, 7’) where: VZQ/)T =0

FLOWD

The analysis proceeds exactly the same as in the 3D case. When a point
= (z,y), which is the local origin for In r, is outside the fluid domain,
o

/[¢—-—05~]d3—~0

When the point P is inside the fluid domain, Green’s Theorem is valid in a

domain in which the point P is excluded by a small circle, circle € surrounding
it since V2 # 0 at P.

o oG 0 oG 09l ,
Then: /cirdee [qb 5 Br] s +/ [ B Gan] ds=0
oG 0¢
Here: — mclee[ o Eﬂ—} = —27¢(P)
0 (z,y) outside S
Therefore: / ( %—g - %ﬂ s=14 m¢(z,y) (x,y)onS

2n¢(z,y) (z,y) inside S

35
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Sometimes, the two-dimensional Green function is taken as:

G(z,y,&,m) = —Inr +¢(z,y,£,m) where: V¢, =0

Then,
0 (z,y) outside S

oG O¢
¢ —G—|ds =1 —7¢(z,y) (z,y)onS
/S { On 6n} —2n¢d(z,y) (x,y) inside S

36
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Force on a Vortex

n = —icosf — ksin6
| r
————2—7‘—_;811'19 wv—%cose

2 2
- P U——“—Slne) +(LC039) ~U?
2 2rr
P =

p| TU., ( r )2
——={ ———sinf
2 { sin ¢ -+ oy

Fp = [ Pnds
= —/27( ( Usm9+L) (——%cos@——fcsine)rdg
2rr 4rr
. 2 pUP pUF
= k/o G Sin 29y de_—kT
Momentum influx = M;, Uy, =1U-n = —U cosf

Fy = My, = p/ few,Uspr O = —k—p—gz

Fyta = Fp + Fy = —kpUT

37



Lift on a Vortex in a Cylinder

When a vortex is in a uniform stream, to determine the lift force both the pressure
force and the momentum influx into a circular cylinder must be considered.

If the vortex is in a flow whose streamlines form a cylinder around it, there is no
momentum influx so the pressure force is the complete force.

A closed circle in a stream can be represented by a dipole.

The velocity potential of a 2D dipole is ¢ = A

_z
2422

For the flow to make a circle of radius equal to 1 in a stream of speed U, A = U.
the x— and z—directed speeds on the circle of radius 1 due to the dipole are:

ug = U(2* — z*) = U(sin* § — cos? §) = —U cos 20

wyg = —2Uzx = —2U sin @ cos @ = —U sin 26

The speeds obn the circle due to the vortex are:

- T r
Uy = —%smé’ w, = %cose

The pressure on the circle is:

P r ) 2 ] T 2 0
P = —- (U—-UcosZO————~sm0) +(—Usm20+—cos€) -U
2 27 2T
I\? r
= P U2+(——) —-2U200520—U—sin9+Esin&cos%——gcosé?sin%
2 21 iy T T

38



The vertical force, F, is:

F, = /02“Pn-1%d9: /02” _Psin0df

UL ror
F, = P / (—- sin20+sin29(:os20—sianosHsinZt‘)) df
2r /o
_ pUT jon . 9 1 1.,
= —27/0 (—sm 0—5005 29—§sm 29)d9

r
STt N
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Example: Design of 2D Airfoil Mean Line using Dipoles and Vortices

1
P= —1—/)U2 - 5,0(U+u)2 ~ —pUu

y 2
T"4
))
— \\

E=0 E=1 ' =00

E=2x/c z=ck dr = cdf n=uy/c

Design Condition: Pyqp, = —1.0pU%€(1-€)  Pyottom = 1-0pU%(1 —€)

up = 1.0UE(1 — €) up = —1.0U£(1 — €)

b= [} uae = [Fudg = Love [{(¢ - at = 1ove (5 - §)

2 3
¢, = —1.0Uc (-éj — gi)

2 3
1.0 1.0 1.0
$e(§=1) = ?Uc $o(§ =1) = _—G—UC (¢: — ¢b)§:1 = —3-Uc
2 ¢3
[Dipole Strengthl¢ ) = 1 = 2.0Uc (% - %—) Pwake = —1'3—OU c

G=lnr=n(z—z) +(y- yo)2]1/2 = -;-ln [(z — 2)* + (y — o)’
(Ge)= 5 ()5
n/)e By, /e Y

40



Foil 2.¢/4 {01)

Consider the upper surface:

(%) . _aG . Y—Yo
on/; - 6yo N (33 — xo)z + (y - y0)2

¢(m’y) B %/000 IUI(ZB )( wog)/2 +y((;J '!/o)2

d¢ 1 e (. —20) + (¥ — %0)? — 2(y — ¥o)?

Y Y iy

0 (T — To)2 + (¥ — ¥0)> — 2(y — o)?
[(z = 25)2 + (¥ — yo)2)°

dz,

- (33 :Eo) (y yo) . c ) (x $0)2_(y_y0)2 'x
/H( "Nz w7 G (ool (-9

:—/ u(xo) 0) ———5dz, + ,u(c/ z?c_l—

_ $0)2da:0

[g_z} Y=Yo=0

The above analysis has an incorrect non-integrable singularity at x = x, be-
cause a careful limiting analysis requiring V2¢ = 0 was not done.

However, another, and simpler, approach exists.

A dipole represents a jump in the potential. Another way to achieve a potential
jump is a vortex distribution.

N e W W e W e
A A A A A GA,

In length dzx,, vortex strength =vy(x,)dz,. y(x,) is vorticity /unit-length.

w(z) = v(z) = ug(x) — up(z)

(z) _ o 2z)
o wle) =l

v(z) = —/OC —2—7—1_2/(33—0)—de

T — T,)
_u(@) 1 ()
sope =T = b e - gy
where: 7'(§,) = fy_(cUﬁ_o)
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Foil 5y &

Now, we can solve for the mean line shape of the airfoil

For an arbitrarily defined pressure distribution, the integral for the slope can
be done numerically. Here, for the particular pressure distribution given, we
will solve for the slope analytically.

Then the shape is found by integrating the slope, s(§). This will be done
numerically.

7'(§) = 2.06(1.0 - &)

7(§o . 10 go )
s©) = / P A i A a2

s = {5- (-9 [em7E+ 1]

Non-Dimensional Height = n(§) = /0 ‘ s(&)d&,
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C:\MATLABé6pl\work\foiltd.m
July 11, 2002

Page 1
9:24:51 am

format compact
x = 0 : 0.01 : 1.0;
fac = -1.0/pi;

s = fac.* (0.5 - (1.0-x).*( x.*log((l.0-x+eps) ./ (x+eps))+1.0));

h(1) = 0.0;
for i = 2:101

h(i) = h(i-1) + (x(i)-x(i-1))*0.5*(s(1

end;

fid = fopen('ht.dat’','w');

for m = 1:101
fprintf (fid, '%$6.2f
end;

fclose (£id);
plot(x, s)

yvlabel ('Slope')
xlabel('\xi'")
pause

plot{x,h)
ylabel ('Camber')
xlabel ('\xi')

title('Camber vs \xi')

axis ([0 1 0 0.066])
grid

%7.4f\n' ,x(m

43

y+s(i-1));

)



[eNeNeNoNeNoNoNoNeoNoloNoNoNoNe NeoNoNeoNeo oo loReo o NoNeoNoe NoNoNe Ne Neo e No e Ne NoNe No No Ne NoNoNe NoNoNoNoNoNoNeoNo Ne Ne o No Neo |

A

.00
.01
.02
.03
.04
.05
.06
.07
.08
.09
.10
.11
.12
.13
.14
.15
.16
.17
.18
.19
.20
.21
.22
.23
.24
.25
.26
.27
.28
.29
.30
.31
.32
.33
.34
.35
.36
.37
.38
.39
.40
.41
.42
.43
.44
.45
.46
.47
.48
.49
.50
.51
.52
.53
.54
.55
.56

CLOPE

.1592
.1705
L1771
.1818
.1853
.1878
.1895
.1905
.1909
.1908
.1903
.1893
.1879
.1862
.1842
.1818
.1792
.1763
L1731
.1697
.1661
.1623
.1583
.1541
.1497
.1451
.1405
.1356
.1306
.1255
.1203
.1150
.1095
.1040
.0983
.0926
.0868
.0809
.0749
.0689
.0628
.0567
.0505
.0443
.0380
.0317
.0254
.0191
.0127
.0064
.0000
.0064
.0127
.0191
.0254
.0317
.0380

[eNeNeNeNoNeNoNoNeNelNeoNoNoNoNeNoNoNoNoNololoBoRoNoNolNeNoNeoNoNololNoNoNoNolNoNoNoloNoNoNoNole o lolNo oo Ro)

HEGET

.0000
.0016
.0034
.0052
.0070
.0089
.0108
.0127
.0146
.0165
.0184
.0203
.0222
.0240
.0259
.0277
.0295
.0313
.0331
.0348
.0364
.0381
.0397
.0413
.0428
.0442
. 0457
.0471
.0484
.0497
.0509
.0521
.0532
.0543
.0553
.0562
.0571
.0580
.0587
.0595
.0601
.0607
.0612
.0617
.0621
.0625
.0628
.0630
.0632
.0632
.0633
.0632
.0632
.0630
.0628
.0625
.0621

[eNoNeNoReNaoNeNelelNoNoNeoNeolNeNelNoNeoNeNeNolloNoNeNeNoleNoNeNeolNeNeNolNeoNole e Bo e Ne No oo NeolNolNeNo o NoNoRe oo o Neo No o N o]
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mNeNeoNeoNeoNoNeNoNeoNoNolNoNoNoNoNoNoRoNeolNoNeNolNoBoNeoNeNolNeNololNeNeoNeolNoNoNoNololNolollolNelelNe

.57
.58
.59
.60
.61
.62
.63
.64
.65
.66
.67
.68
.69
.70
.71
.72
.13
.74
.75
.76
.77
.78
.79
.80
.81
.82
.83
.84
.85
.86
.87
.88
.89
.90
.91
.92
.93
.94
.95
.96
.97
.98
.99
.00

. 0443
.0505
.0567
.0628
.0689
.0749
.0809
.0868
.0926
.0983
.1040
.1095
.1150
.1203
.1255
.1306
.1356
.1405
.1451
.1497
.1541
.1583
.1623
.1661
.1697
.1731
.1763
.1792
.1818
.1842
.1862
.1879
.1893
.1903
.1908
.1909
.1905
.1895
.1878
.1853
.1818
L1771
.1705
.1592

[eNeNeNeNolNoNeNeleoNoNoNoleoNoNeoNoNeoNolNoNoNoNe o leloleNolloloeNeleNololNolelNolNelelolo oo ool

.0617
.0612
.0607
.0601
.0595
.0587
.0580
.0571
.0562
.0553
.0543
.0532
.0521
.0509
.0497
.0484
.0471
. 0457
.0442
.0428
.0413
.0397
.0381
.0364
.0348
.0331
.0313
.0295
.0277
.0259
.0240
.0222
.0203
.0184
.0165
.0146
.0127
.0108
.0089
.0070
.0052
.0034
.0016
.0000
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n,
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foiltd
format compact
x=0 :0.01: 1.0;

fac = -1.0/p1i;
s = fac.*(0.5 - (1.0-x).*( x.*1og((1.0-x+eps)./(x+eps))+1.0));
h(1) = 0.0;

for i = 2:101

h(;) = h(i-1) + (x()-xG-1))*0.5*(s()+s(i-1));
end;

fid = fopen('ht.dat’', 'w');

for m = 1:101

fpgintf(fid,'%G.Zf %7.4f %7.4f\n',x(m), s(m), h(m));
end;

fclose (fid);

plot(x,s)

ylabel('Slope')

xTabel("\xi")

pause +

plot(x,h)
ylabel('Camber')
xTabeT("\xi")
title('Camber vs \xi')
axis([0 1 0 0.066])
grid
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foiltda
% Version of foiltd with one less loop for computing speed improvement

X =0 :0. 01 : 1.0;
fac = -1.0/pi
ﬁ(i)fac *(0 5 - (1.0-x).*( x.*1og((1.0-x+eps) ./ (x+eps))+1.0));

for 1 = 101

h(é) h(1 1D + xXE)-xG-D)*0.5*(s(i)+s(i-1));
en

fid = fopen('hta.dat’,'w');

q = [x;s;h];

fprintf(fid, '%6.2f %7.4f %7.4f\n',q);
fclose (f1d), -

plot(x,s)

ylabel('STope')

xTabel ("\xi")

pause

plot(x,h)

ylabel ('Camber')
xTabel('\xi')
title('Camber vs \xi')
axis([0 1 0 0.066]1)

grid
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foiltdb
% This version uses even more vectorization and no "for" loops at all.

% Version of foiltd with one less loop for computing speed improvement

=0 i 8/01 : 1.0;
% 0 60 5 - (1.0-x).*( x.*10og((1.0-x+eps) ./ (x+eps))+1.0));

n o

[0 diff()1; % This is [0 x(D-x(1) x(3)-x(2) ...]

[0 sgl end-1) + s(2:end) ] % This is [0 s(2)+s(1) s(3)+s(2)
0.5*xd .* ss;
cumsum(h); % Each e]ement is the sum of the ones bvefore it.
d = fopen( htb.dat','w');

TST0nN X ISWn -h><
=l
i~

.F
?pr1ntf(f1d '%6.2f %7.4f %7.4f\n',q);
fclose (f1d)

plot(x,s)

ylabel('Slope')

xTabel('\xi")

pause

plot(x,h)
ylabel (' camber')
xTabel ("\xi"')
title('Camber vs \xi')
axis([0 1 0 0.066])
grid
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C:\MATLAB6pl\work\foiltda.m Page 1
July 11, 2002 9:23:45 AM

o

% Version of foiltd with one less loop for computing speed improvement

x =0 :0.01 : 1.0;
fac = -1.0/pi;

s = fac.*(0.5 - (1.0-%x).*( x.*log((1.0-x+eps) ./ (x+eps))+1.0));
h(l) = 0.0;

for i = 2:101

h(i) = h(i-1) + (x(i)-x(i-1))*0.5*(s{(1i)+s(1i-1));

end;
fid = fopen('hta.dat','w');
q = [x;s;h];

fprintf(fid, '%6.2f %7.4f %7.4f\n',q);
fclose (£id);

plot(x,s)

vlabel ('Slope"')

xlabel ('\x1i')

pause

plot(x,h)

yvlabel ('Camber')
xlabel ("\xi")
title('Camber vs \xi')
axis([0 1 0 0.0661]1)
grid
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% This version uses even more vectorization and no "for" loops at all.
% Version of foiltd with one less loop for computing speed improvement

x =0 =:0.01 : 1.0;
fac = -1.0/pi;
s = fac.*(0.5 - (1.0-x).*( x.*log((1.0-x+eps) ./ (x+eps))+1.0));
h(l) = 0.0;
xd = [0 diff(x)]; % This is [0 x{(2)-x(1) x(3)-x(2) ...]
[0 s(l:end-1) + s(2:end) ] % This is [0 s(2)+s(l) s(3)+s(2)
= 0.5*xd .* ss;
h = cumsum(h); % Each element is the sum of the ones bvefore it.
fid = fopen('htb.dat', 'w');
g = [x;s;h];
fprintf (fid, '%6.2f %7.4f %7.4f\n',q);
fclose (f£id);
plot(x, s)
yvlabel ('Slope’')
xlabel ('\xi')
pause

o3
1

plot (x,h)
ylabel (' Camber')
xlabel ("\xi'")
title('Camber vs \xi')
axis ([0 1 0 0.0661)
grid
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