Boundary Layers
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Two-Dimensional Steady Boundary Layer Equations

z is horizontal direction along direction of main flow velocity u. Velocity
at outer edge of boundary layer is called Uy or V, or U, or V..

y is perpendicular to wall and velocity in this direction is v.

The boundary layer begins, say, at £ = 0 and the boundary layer thickness
is 0. & <« z. Because the boundary layer is thin, to leading order the

pressure is constant through the thickness of the boundary layer, 2€ = 0.

» By
Also, v € u, and % K %Z—.

y v Outer flow
| : Edge of = velocity
layer [ .
o
J Wall shear

T \w\m\\ﬂ\ress@\\\\ 5%
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Boundary Layer Parameters

* /- Shifted streamline
- J Streamline position without
" 1_ boundary layer
g %% //////////— Extra thickness
\\\\\\\\\T\\\
6*

Thickness of Boundary Layer defined as location where u is 99% of U..

6= y]u/Uezo.QQ
The wall shear stress 7, is given by:

()3
v\ Oy wan F \y y=0

The skin friction coefficient, (Y, is:

2T, 2u (Ou
or-ns(e2) 35 - H(3)
y =l pUZ  UZ\0y)

[

The displacement thickness, ¢* is the thickness of a flow of speed U, that
carries a flow rate equal to the deficit in the boundary layer because its
speed is less than U,.
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Mass Fluxes
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X l ox l

Meft = mright + Mtop
. d (Y
Mtop = 0 (/o pudy) oz

Momentum Equation in z direction

Mright + Mtop + Miefy = Fpressure + Fytress
: Y
Miege =, pu’dy
' Y o oo d (¥ o,
Mright = /o pu“dy + e (/0 pu dy) 0x

. ) d Y
Miop = myopUe = -Uea‘; (/0 pudy) 0z
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Fpressure = dUe Fs=—1,0x
One additional needed equation is:
Y = /0 g dy
Then all the equations on the last two pages can be combined into:
Ed;/ w(U, — ) d /(U—u)dy—%

For y > ¢ the integrands are zero so the upper limits can be changed to .

d 6 dU. é Tw
- —u)dy = X2
=y wUe = wydy + —= [[(Ue — u)dy ;

This is Von Karman’s Momentum Integral Equation. It relates the inte-
grals of the velocity profile in the boundary layer to the shear stress and
U. and U? whose x-derivative is proportional to the pressure gradient.

The momentum thickness © is defined as:
s U U
o= g (1-g)w

With this definition, the momentum integral equation can be written in
the following two forms:

d 2 * dU. —
%[Ue@]‘{-d Ue - —-—Tw/p
de edU, _Cy R
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A second boundary layer equation comes from equating the kinetic energy
change along z in the boundary layer to the energy input or output from
the pressure distribution and the energy dissipation due to shear stresses
in the boundary layer.

The kinetic energy thickness, 6* is defined as:
% 6 U 2
6" = /(; '(7; ( U*) d’y

The kinetic energy dissipation coefficient, Cp, is defines ad:

D
Cp=—
pu,
where D is the dissipation per unit area (along and perpendicular to the
surface).

Using these definitions, the kinetic energy equation is:

do* 3?_"‘_ du,
dz U, dx

= 2Cp

*

The energy thickness ratio, H* is defined as: H* = )

It is common to combine the kinetic energy equatlon and Von Karman’s
momentum equation to obtain:

0 due
Ue dz

6 dH* 20p C,
H* dz H*

+(H—-1)—
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Example of Solution of Momentum Integral BL Equation

Us >

L .1 0 Meters >|

U=2m/s &(x) = 0.01x(1—e *1%) uy) =(1- e_k(””)y)2 p = 1000kg/m?

Problem: Determine the shear stress, 7, at x = 5 meters.

Determination of ké from BL thickness:

0.99 = (1 — e *@@N s k(2)i(@) =53  k(z) = oo

o(x)
At x = 5m, k = 1347 m~ L.

T

d 0.01{1—exp(—0.1z)] . _
/0 Ue(1 — @2 U, — U, (1 — e ™) dy + 0 = p

dzx

0.01(1 — e %1% = 0.01(1 — %) = 0.00393

— Ue2(1 . 6-5.3)2 [1 . (1 . 6—5.3)2] (_i_:

Ue(1 — e *oM2 U, — U (1 — e7¥@)2) 1 dy

0.01(1 — %)

0.00393 d
+ /0 -

= U2(0.000060 + 0.000100) = 0.00016 U?

7 = 1000 x 4 x 0.00016 = 0.64N/m?

T
— L —0.00032
°f spU?2
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X

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

COO0OOOCOOOOOO0O0OCOOO0OOOOO0O

delta

.000000
.001643
.005434
.010179
.015162
.019979
.024416
.028381
.031848
.034836
.037382
.039534
.041340
.042848
.044104
.045145
.046007
.046718
.047305
.047788
.048185

deldata

Page 1
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y/delta

efololelofolololfololololololololololofololofclcfofololelolofelolelolelolelelolololofelolololole Yo Lol e Lol d o

.000000
.010000
.020000
.030000
.040000
.050000
.060000
.070000
.080000
.090000
.100000
.110000
.120000
.130000
-140000
.150000
.160000
.170000
.180000
.190000

.200000
.210000
.220000
. 230000
. 240000
. 250000
. 260000
- 270000
. 280000
. 290000
.300000
-310000
.320000
.330000
-340000
.350000
.360000
.370000
.380000
-390000
.400000
.410000
.420000
.430000
.440000
.450000
. 460000
.470000
. 480000
. 490000
.500000
.510000
.520000
.530000

efolofolololofololofololofololelololofololofolololololololalelolololafolololololofo foleole e e le Lo le Lo o L o)

u/Ue

.000000
.422358
.500261
.551427
.590201
.621605
.648047
.670886
.690975
.708884
.725018
.739674
. 753079
.765409
. 776804
.787378
.797225
.806423
.815038
.823127
.830737
.837911
. 844685
.851092
.857160
.862915
.868379
.873573
.878515
.883221
.887707
.891986
.896072
.899974
.903705
.907274
.910689
.913960
.917093
.920096
.922976
.925739
.928390
.930936
.933381
.935730
.937988
.940158
.942245
.944252
.946184
.948042
. 949832
.951554

"udata

180

y/delta

HFOOOOOOO0OOOOO0OOOOOOOOOOO0OO0OO0O0ODOO0O0O0O0O0O0O0OOOOOOOOOOOO0

. 540000
. 550000
. 560000
.570000
. 580000
. 590000
.600000
.610000
.620000
.630000
.640000
.650000
.660000
.670000
.680000
.690000
. 700000
.710000
.720000
.730000
. 740000
.750000
. 760000
. 770000
. 780000
.790000
.800000
.810000
. 820000
.830000
.840000
.850000
.860000
.870000
.880000
.890000
.900000
.910000
.920000
-930000
. 940000
.950000
. 960000
.970000
. 980000
.990000
.000000

COO0O0O0CO0OOCOOOOOOOOOOO0OOCOO0O0OO0OO0OO0ODOOO0OOOOOOOOOOOOOOO

u/Ue

.953213
.954812
.956351
.957835
.959264
.960643
-961971
.963253
. 964488
.965680
.966830
.967939
.969009
.970042
.971039
.972001
.972930-
.973827
.974693
.975529
.976336
.977116
.977870
.978597
.979300
.979979
.980636
.981270
.981882
. 982475
. 983047
- 983600
. 984135
.984651
.985151
.985634
-986101
.986552
.986989
.987411
.987819
. 988214
. 988595
.988964
-989321
.989666
.990000



Calculation of Turbulent Boundary Layer
when Pressure Distribution is Known

FmBBL¢ A7)

This result is approximate since the boundary layer thickness will alter

the pressure distribution.

The principal unknowns (quantities to be determined) are: 6(z) and 6*(z).

An equivalent set of unknowns is 6(z) and H(z).

There are two fundamental equations:

& 6 dU, C;
%———(H-I—Q)(—];dx-F?

0 dH* 2Cp G 0 du,

Ta o 2 TH- Do

(1)

(2)

To be able to integrate the unknowns along the boundary layer, the deriv-
atives of each of them are required: df/dx and dH/dz. Equation 1 is in
the desired form. To put equation 2 in the desired form, use the chain rule:

dH* dHdH*
dr  dzr dH

(3)

Empirical “closure relations” for H*(H) and dH*/dH exist. Therefore we

write the energy equation in the desired form as:

dH H* 1 2Cp  Cj
de 6 dH*/dH | H* 2

+ (H - 1)—
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To do the integrals numerically, we need a means of determining C¢, Cp, H*
and dH*/dH in terms of the principal quantities H and Ry, where Ry =
U /v. These empirical ”closure relations” have been determined by as-
sembling a large amount of experimental data.

Laminar Closure Relations

e | 0-76(H — 4)?/H + 1515, H <4.0
| 0.015(H — 4)?/H 4+ 1.515, H > 4.0

¢ — { r0.03954[(7.4 — H)?/(H—1.0)] —0.134] /Ry, H <174

0.044[1.0 — 1.4/(H — 6)]*> — 0.134] /Ry, H>174
2Cp [ [0.00205(4 — H)5S + 0.207] /Ry, H <40
H* | [-0.003(H —4.0)%/(1+0.02(H — 4)*) +0.207) /Ry, H > 4.0

Turbulent Closure Relations

H. — 3+ 400/R9, Ry > 400
° 1 4, Ry <400

n, _ | Ro, Ry>200
9271 200, R, < 200

g { 1.505 + 4/ Ry + (0.165 — 1.6/y/Ry) HezH)12 H < H,
— : In(Rp,
(H — H,)2[0.007 g 2ed oy + 0.015/ H] + 1.505 + 4.0/ Ry, H > H,

C, — 0.3¢133H M —(1.74+0.31H)
T 2.3026

2Cp 40/H —1 113
7o = 0.5C;—————+0.03 (1 - ﬁ>
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Sea Waves

& ¥ 4

Dominated by inviscid irrotational solution (V2¢ = 0)

Boundary Conditions

0 _ 0 080, 090
8z ot + [83:8:3 + ayc'?yL:C

{%_f + % [(%)2 + (%)2 + (%)Q] }Z:C—l—gg = constant (0) (dynamic)

Linearized Boundary Conditions

(kinematic)

Case of onset flow velocity of —:U.
Now ¢ is the perturbation potential and the total potential is —Ux + ¢.
ol w v [aUa

2 ot 5&]2:0”4:0

0 Ot ox

For steady flow with onset flow:

¢ & 04
.- Vs Ugp ™9

o9 _ U0
0z g Ox?

Case of 2D waves and zero onset flow so ¢ is the total potential.

0¢ ¢ 3(15] _
5. 5 5., 96 =0
Dispersion Relations for waves of ciruclar frequency w = 2w f and

wavenumber = k = 27/ and zero onset flow.
w? = gk deep water

w? = gktanh kh water of depth h
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M3,z f/%_)

v _ % % - 1%
o) = Yot 9z):0 g2,
10¢

¢ = A=) and  (=-=—2

Deep Water

¢ = BelZe!Fs=«t)  Traveling wave that satisfies Laplace’s Equation

2
Bkekzei(kz—wt) — ;_wZBekzei(k:v—wt) k= % w2 — kg
1 . i(kz—wt)
(=——(—w)Be
g
A=2B B=-24=-“2
g w k

Finite Depth
¢ = Bcosh k(z + h) eiks—«t)

Bksinh khei®e=t) — B,21 cosh E eilks-on)

g
2
ktanh kh = “’? w? = gk tanh kh
. | . | |
¢ =~ (~iw)B gilke=wt) %Bcosh(kh) gilkz—wt) A= %" cosh(kh) B
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Example of Simulation

Suppose a two dimensional (long crested) wave is generated with a wave-
maker in a wave tank with an elevation at a specified location given by

z(t), where:

2(t) = 0.97sin(5.2t + 0.82) + 0.99 sin(7.8¢ + 1.24) + 1.08sin(9.8¢ + 2.72)

What is the maximum elevation that occurs in the time interval of 0 to 120
seconds (2 minutes). The usual way of finding maxima of analytic functions
by setting the derivative to zero is not practical here because there are a
great many maxima and the largest of these must be determined. However,
because of the great computational speed of common computers, this can
be done numerically without much effort.

MATLAB Version of program Sinmax
0:0.01:120; Prog

0.97*sin(5.2*t + 0.82) ...

+ 0.99*sin(7.8*t +1.24) + 1.08*sin(9.8*t + 2.72):
zmax = max(z); ’
mmax= find(z == zmax);

tmax =(t(mmax)); =

fpr1?gf2§1,'tmax = %7.3f zmax = %8.4f\n',tmax,zmax);
gid_= fopen('zmaxm.dat', 'w');

f?r1ntf(f1d,'%f7.2f %8.4f\n',q);

plot(t,2z);

xlabel('t");

ylabel('z");

title('sinmaxm');

%
t
z

>> sinmaxm
tmax = 118.490 zmax = 2.9447
>>
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Sinmaxm

T

of _
A .
2+ 4
3 1 ! L 1 L L ! L |
40 41 42 43 44 45 46 47 48 49
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Sea Spectra

We consider wave fields whose statistics are both stationary and homoge-
neous in the horizontal plane.

A sea spectrum function Sr(k,w,0) is a partial description of the statistics
of the wave field defined such that St(k,w,8)dk éw §6 is the contribution
to the average wave energy per unit surface area, E, in the wavenumber,
wave circular frequency and propagation angle bands; dk dw 6.

For surface elevation ((x,t) the average wave energy is defined as:
E=<(>
where < > signifies the statistical, temporal or spatial average.

Thus: < >= [ [* [ Sr(k,w,0)5k 6w 50

Similar definitions apply when frequency, f, is used instead of circular fre-

quency, w, and/or when spatial frequency, %, is used instead of wavenum-
ber, k.

For the frequently encountered case of linear, deep water gravity waves the
circular frequency and the wavenumber are related to each other through
the dispersion relation

w? = gk

so that w and k are not independent of each other. Then the spectrum is
a function of only one or the other of these variables and can be written
as: Si(w,0) or Sy(k,0). These functions are related by:

Sy (k,0) = %St(w,ﬁ)
Hence: < (*>= [ [ 5,(k,0)tkdd = [ [ Su(w, 0)dwdo

For unidirectional (long crested) seas, all the waves are in a single direction
and the spectra are described by Si(w) or S;(k).

<@ >= [ Siw)dw = [~ Sy(k)dk
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m b =

The fundamental linearized plane progressive wave is:
Cz Aei(kx—wt)

¢ - ZC‘;CA ekzei(kz—.wt)

Random sea waves have spectrum S(w, 9).
For the 2D case the spectrum is S(w).

S(m)

0]

J¥* S(w)dw is the contribution to (? of waves with circular frequencies
between w; and ws.
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Fourier Transforms

Fourier Transforms are valuable tools in numerical hydrodynamics because a
number of problems can be described in the form of Fourier transforms and they
can be computed very quickly by the Fast Fourier Transform (FFT) method.
Two of these problems are solving a certain class of differential equations, and
in simulating sea waves.

(o8]

X(f)=Fa(t) = [ _a(t)e ™ dt

-0

2(t) = FX(f) = [ X(f)etdf

As an example, consider a differential equation with constant coefficients of the
form:

dn,y dn—ly

n~; . An—
A T +

Consider Fourier Transforms from x to f where:

Fly(z)] =Y () and Flg(z)] = G(f)

Take the Fourier transform of the differential equation to get:

(@2n )" AnY (f) + (127 f )" A Y (f) + oo + AY () = G(f)

This is an algebraic equation which can be numerically solved for Y (f):

_ G(f)
(27 f )" A + (@2 )" An s + Ag

Y(f)

y(z) can be determined by inverse Fourier transformation. Not only is this
less computationally intensive than solving the differential equation by direct
numerical methods, but the error in the integration rule is avoided.
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Fourier Transforms (continued)

X(f)=Fa(t) = [ _a(t)e ™/t
a(t) = FX(f) = [ X(f)e df
Suppose z(t) = 0 for t < 0 and ¢ > T. Then:

X(f)~ [ z(t)e > dt

Also, suppose x(t) is band limited such that: X (f) = 0 for |f| > Finaz- Then:

2(t) = FX(f) = [T X(f)e s

—Fmazx

Now, consider a periodic function having period ¢ that is identical to z(t) for
0 <t < T'. This function has a Fourier series given by:

o0 . 1 /T .
_ i2mnt/T _ —i2rnt/T
z(t) = n:%oo Ane , A, = T/O z(t)e dt

The express1on for A, is identical to + T times the Fourier Transform evaluated at
f = #%. These Fourier coefficients, A, = %X (T) can be numerically evaluated
very quickly by an algorithm called the Fast Fourier Transform (FFT).

From the A,’s, the function z(t) can be constructed over the ¢-range 0 < t <
T'. Outside this range the reconstruction is periodic whereas the real value of
z(t) ~ 0

Evaluate A, by the following rectangular rule integration:

1
ot = 57 t=70t jmee=N T =Not =z;=uz(jot)
max
1 Nl i2mnjot 1 N i
— t _ —_ p—i2mnj /N
A, Nt 2 z(j0 )exp[ ot ]5t N Z:: zje
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Fourier Transforms (continued)

X(f):()fOTfZFmaz=2—&andf:%, SO(Sf:—T—,; and’l'lma,x:T'f',mm:3
1 1 1
t= ot = = —
° 2Fmas’ of 2FmaeT N
/2 i2rnjot) 1 /2 .
WA ]5t =T, = TA exp [ ] — — Z AnezZan/N
( ) ’ n=§\[/2 " N&t T n:-—N/Z

Fast Computing

Computing speed is minimized by minimizing the number of complex exponen-
tials that must be computed.

Let: q; = 6—i27r/N ¢ = ei271'/N

e—i21rnj/N — 6—i27r(n—-1)j/Nq{ — e—ian(j—l)/N q;z

i2rnj /N __ _i2n(n-1)3/N Jj __ _i2an(j—-1)/N n
ei2mmi/N — gi2n(n-1)j/N of _ gi2mn(j—-1)/ &

Even the powers of q can be avoided:

e—i2r(OO)/N _ |

e~ MW/N _ =2 (OO/N o
e~ 2T W@/ _ g-2r (/N o
e~ 2W/N _ g=i2n (/N o
e~ BN _ g=i2n()@)/N

o—i2r(@)/N _ —i2n(1)(3)/N "

etc.
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Fourier Transforms (continued)

‘Periodicity
The actual integral transforms are of limited extent.
z(t) =0 except for 0 <t <T

X(f) = 0 except for — Fipor < f < Frnae

However, the mathematical constructions, while consistent with the integral
transforms for : 0 < ¢t < T, and —Fmazx < f < Fmaz, are periodic outside
these ranges.

1 = o—i2n(n+N)j/N 1 = —iomnj/N _—i2nj _ L = 12 /N
A”JFN-Y\T—g =—-j\7§)wje e —Ng = A,

N/2 ) ] N N/2 ) ) ) N/2
TiN = Z A, ez27m( J+N)/N _ Z An 6'L21r'n,_7 /N ezzﬂ'n _ Z An ez27rnj /N _ = x;
n=—~N/2 n=—N/2 n=—N/2

Therefore: z; = Z Apeltmmi/N
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Compatational FFT and LFFT of Rehe Numpers

A :f/’ '%' A5 e'l}m%/ - H"e&?ﬂ—m/y

/ I)"-_,M
d 7=
- jﬁi— / N—.X i Y - -
Ay - L S xe?™emV = g =7v€
[ A4 \"‘ﬂ
d’-
If Xi'S are real H'eg’: is réal
Q~1:QA'—I

2
alse, f the Xx; are reql,
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Simulation of Random Waves

Here we consider two-dimensional (long crested) waves. The waves are approx-
imated as hydrodynamically linear in the sense that wave breaking and other

nonlinear effects are neglected.

2
1
A
~ 0 \//\\//\/\\//\\//\\/N\\/ N\
-1
2 4 6 8 10 12 14
t
2
1

0 10 20 30 40 50
X

n=0

00 2
((z,t) = > Z,cos (—%@x + wyt + an)

where the Z,,’s are chosen to provide the desired wave spectrum and the «o,,’s are
random numbers uniformly distributed on 0 < a < 2.

00 2
An alternate expression is: ((z,t) = ), Zpexp [z (—ﬂx + wpt + an)}
Y

n=—oo

Combining e**" into Z,, the surface elevation vs time at z = 0 is:

¢(t) = i Znent

n=—oo
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Circular Frequency, (radians/sécond)

The region in the “almost trapezoid” is represented by a sinusoidal wave having
frequency w, and the same energy, F, of this region of the spectrum. The
sinusoidal wave Ae™°t has energy |A%|. Thus,

|1A2] = S(w,)dw

The waves are random processes and can be represented in two different ways.
One way is to have stochastic waves and a stochastic spectrum whose expectation
is equal to the spectrum being simulated (Type 1). The other way has stochas-
tic waves and a deterministic spectrum equal to the spectrum being simulated

(type 2).
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Similarly, at t = 0 the surface elevation vs z is:

o

C(:L‘) = Z Z,'le"ik"m = Z Zneik”x where kn:%

n=—oo n=—=oo

With w, =2méf, k, =2mndéb, (b= 1/)), t = jét, = = jér, and n limited
to —--]2! <n< 1—;’- with 6 f 6t or 6bdx equal to 1/N, the expressions for ¢ have
the form of an inverse discrete Fourier transform. Hence, by first choosing the
Zy’s so they are consistent with the wave spectrum, the surface elevation for all
values of ¢ or for all values of x can be computed very rapidly by using an FFT
program.

Either set Z_,, = Z or use non-negative n and take the real (or imaginary) part.

We will use the method in which Z_,, = Z.

This corresponds to a two-sided spectrum whose levels are half the levels of the
corresponding 1-sided spectrum.
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Type 1

At a fixed value of x, the sea elevation is ((t) which is a sample function of a
random process having a 2-sided power density function, S, (w). The associated
1-sided spectrum is Sw(w) = 2S,(w) for w = 0. The fourier transform of {(t)
is Z(w). The spectrum and the Fourier transform of {(t) are truncated at |w| =
we = 27 f.

¢(t) is discretized with the time interval 6t = 7/w. to satisfy the sampling theo-
rem. Thus, ((t) is specified at the discrete times (; = ((jét), 7 =0,1,2,...,N.

The Fourier coeflicient Z; corresponds to the circular frequency w; = jow,
J= —%[- +1,...,,0, % , where dw = %. N is usually chosen as a power of 2
for computational efficiency.

For the Type 1 approach, each Fourier coefficient is separated into its real and
imaginary parts and each of these is an uncorrelated Gaussian variate.

Z; = Zy, +iZ;,

Zr; and Z;; are identically distributed with the probability density function:

(Z.) 1 VA
)= exp | ——=

Pl = iar P\ 20

From the physics of the modeling, where here £ means “Expectation”:

FE [IZf” = Sy(w;)dw
B[22 = B[22] = Sulw))iw

From the mathematics of the Gaussian pdf: 032- =F [ij]

1 1
;= Jgsw(wj)w = JZSW(I%'D&U

There are computer programs which give Gaussian distributed random numbers
for which the user specifies o;.

Type 2 Zj = €",/Sy(w;)0w = eiaj\] —21—Sw(wj)6w : wj >0

«; is uniformly distributed on 0 < o;; < 27 and can be obtained from a random
number computer program.
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We truncate the spectrum at frequencies +N/26w.

Thus the expression for a simulated two-dimensional (long—érested) random wave
elevation at a point on the ocean surface is:

N2 1 '
¢it)y= > ew‘"\J ~Sw(|ndw|)dw eimiw)t
_N/2 2
where a” is a random number, < o, < 27, and o, = —a_,.

This can be extended to a long-crested wave field, dependent on = and ¢ as:

N/2 ] 1 .
C(z,t) = > ewn\] —Sw(|ndw|)dw etl(néw)t—(ndw)indwiz/g)
“N/2 2 -

This is because |k| = w?/g.
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% Wavesims
dt = 0.05;
npts = 8192
nptsoZ npts/2
dt* npts; /dt * 8192 for 8192 total points
t = O dt: (tr- dt),

g = 9.81;

v = 15.0;

df = 1. O/tr,

ffold = df * nptso2; %df * 4096 for 8192 total points
f = 0:df: ffo1d

f = f+eps;

facl = 0.0081 * g*g/tp4;

fac2 = 0.74 *(g/v)A4/tp4

s = 0.5%facl ./ f.A5 .* exp( -fac2 ./f .A 4);

rand ('state’ ,sum(lOO*c1ock)),

p=2.0%*pi * rand(1,nptso2);

p(nptso2+1) = 0.0; %4097 for 8192 total points
z = exp(i*p) .* sqrt(s*df);

zt = [ z conj(flip1r(z(2:4096)))];

zeta = real (fft(zt));

%The above gives same result as zeta = npts*real (ifft(zt))
plot (t,zeta);

x1abe1('TIME (sec) ")

ylabel ('SURFACE ELEVATION (m)');

title('simulated Sea waves at a Point');

209



SURFACE ELEVATION (m)

Simulated Sea Waves at a Point
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Simulated Sea Waves at a Point
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Generating Gaussian Random Numbers

This note is about the topic of generating Gaussian pseudo-random numbers given a source of
uniform pseudo-random numbers. This topic comes up more frequently than I would have expegted,
so I decided to write this up on one of the best ways to do this. At the end of this note there is a list
of references in the literature that are relevant to this topic. You can see some code examples that
implement the technique, and a step-by-step example for generating Weibull distributed random
numbers.

There are many ways of solving this problem (see for example Rubinstein, 1981, for an extensive
discussion of this topic) but we will only go into one important method here. If we have an equation
that describes our desired distribution function, then it is possible to use some mathematical trickery
based upon the fundamental transformation law of probabilities to obtain a transformation function
for the distributions. This transformation takes random variables from one distribution as inputs and
outputs random variables in a new distribution function. Probably the most important of these
transformation functions is known as the Box-Muller (1958) transformation. It allows us to
transform uniformly distributed random variables, to a new set of random variables with a Gaussian
(or Normal) distribution.

The most basic form of the transformation looks like:

sgrt( - 2 ln(xl) ) cos( 2 pi x2 )
sgrt( - 2 1ln(x1l) ) sin( 2 pi x2 )

vl
v2

o

We start with rwo independent random numbers, x1 and x2, which come from a uniform distribution
(in the range from O to 1). Then apply the above transformations to get two new independent random
numbers which have a Gaussian distribution with zero mean and a standard deviation of one.

This particular form of the transformation has two problems with it,

1. Itis slow because of many calls to the math library.

2. It can have numerical stability problems when x1 is very close to zero.
These are serious problems if you are doing stochastic medelling and generating millions of
numbers. :

The polar form of the Box-Muller transformation is both faster and more robust numerically. The
algorithmic description of it is:

float x1, x2, w, vi, ¥2;

»x
=
[t

w = sqgrt{ (-2.0 * log(w ) ) / w);
vyl = x1 * w;
y2 =

where ranf() is the routine to obtain a random number uniformly distributed in [0,1]. The polar form
is faster because it does the equivalent of the sine and cosine geometrically without a call to the
trigonometric function library. But because of the possiblity of many calls to ranf(), the uniform

1of3 7126/99 5:49 PM
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random number generator should be fast (I generally recommend R250 for most applications).

Probability transformations for Non Gaussian distributions

Finding transformations like the Box-Muller is a tedious process, and in the case of empirical
distributions it is not possible. When this happens, other (often approximate) methods must be
resorted to. See the reference list below (in particular Rubinstein, 1981) for more information.

There are other very useful distributions for which these probability transforms have been worked
out. Transformations for such distributions as the Erlang, exponential, hyperexponential, and the
Weibull distribution can be found in the literature (see for example,MacDougall, 1987).

Useful References
Box, G.E.P, M.E. Muller 1958; A note on the generation of random normal deviates, Annals Math.
Stat, V. 29, pp. 610-611

Carter, E.F, 1994; The Generation and Application of Random Numbers , Forth Dimensions Vol XVI
Nos 1 & 2, Forth Interest Group, Oakland California

Knuth, D.E., 1981; The Art of Computer Programming, Volume 2 Seminumerical Algorithms,
Addison-Wesley, Reading Mass., 688 pages, ISBN 0-201-03822-6

MacDougall, M.H., 1987; Simulating Computer Systems, M.L.T. Press, Cambridge, Ma., 292 pages,
ISBN 0-262-13229-X

Press, W.H., B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, 1986; Numerical Recipes, The Art of
Scientific Computing, Cambridge University Press, Cambridge, 818 pages, ISBN 0-512-30811-9

Rubinstein, R.Y., 1981; Simulation and the Monte Carlo method, John Wiley & Sons, ISBN
0-471-08917-6

See Also: A Reference list of papers on Random Number Generation.

Everett (Skip) Carter

Taygeta Scientific Inc.
UUCP: ... 'uunet!taygeta!skip
WWW: http://www.taygeta.com/

7/26/99 5:49 PM
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/* boxmuller.c Implements the Polar form of the Box-Muller
Transformation

(c) Copyright 1994, Everett F. Carter Jr.
Permission is granted by the author to use
this software for any application provided this
copyright notice is preserved.

*/

#include <math.h>

extern float ranf(): /* ranf{) is uniform in 0..1 */

float box_muller(float m, float s) /* normal random variate generator */
{ /* mean m, standard deviation s */

float x1, %2, w, yl;

static float y2;

static int use_last = 0;

if (use_last) /* use value from previous call */
{

yl = y2;

use_last = 0;
}
else
{

do {

x1 2.0 * ranf() -

= 1.0;
x2 = 2.0 * ranf() - 1.0;
w=x1 * x1 + x2 * x2;
} while ( w >= 1.0 );

= sqgrt{ (2.0 * log( w ) ) / w);
x1 * w;
X2 * w;
use_last = 1;

w
vyl
y2

non

}

return( m + yl1 * s );
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Simulated Sea Waves at a Point
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Simulated Sea Waves at a Point
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Wave Statistics
One way to calculate wave statistics is directly from long-term simulations.

Example What is the expected value of the largest wave elevation in a day?

Solution by simulation from a known wave spectrum.

1. Simulate waves for many days.
2. List the largest elevation in each day.

3. Calculatethe average of the values in the list.

Another Example What is the probability that the largest wave elevation in
one day is less than the value V. Solution by simulation.

1. Simulate waves for many days.
2. Determine the fraction of days that the elevation does not exceed V.

3. This fraction is an estimate of the desired probability.

The above direct approach is cumbersome and computationally intensive. Many
wave statistics have been theoretically determined in terms of the wave specturm.
The associated formulae can be determined using numerical integration.
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Results from Theory

The spectral moments, m,,, are defined in terms of the one-sided spectrum,
Sw(w), as:
o0
My = /0 Sy (w)dw

The following results apply when the surface elevation is a gaussian random
process.

N oaes AN e N
V/\VMAV ARV,

TIME

SURFACE ELEVATION

Number of Waves per Unit Time

The average number of times the wave elevation, (, crosses the mean sea
level (¢ = 0) per unit time while increasing is called f, and given by:

1 mo

fo —

_27r my

The average number of wave crests per unit time is called f. and is given
by:

fom o | A

B % mo
The bandwidth, €, is given by:

= I=RIT?
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Definition of a gaussian random process For any number of variables,
the joint probability density (pdf) of all the variables is a joint gaussian
random variable at each time for a gaussian random process. This proba-
bility density function is given by:

1 1 -1
p(z1, 22, ..., Tn) = Wexp{—§[X]T[A |[X]}

[X] is the column vector of the variables. A is the n-by-n covariance matrix
whose elements are given by:

Ay = Elziz;]

For most wave statistics of interest, the doubly joint pdf between surface
elevation, ¢ and vertical surface velocity, ¢, and the triply joint pdf where
the surface acceleration, (, is included are all that are needed.

b1 mag* + mo(?
p(C’ C) - o Mo, exp [ 2m0m2
Py 1 _m2m4§2 + (momy — m3)¢% + momal? + 2m2¢¢
p(C) C) C) (27r)3/2\/7n2(m0m4 = m%) € [ 2m2(7n0m4 — m%)
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The normalized Gaussian probability distribution function (pdf), ¥(z), is:
1 = 2
L —-z%/2
U(z) = Wor /_ooe dz

Call the crest height &.

The normalized crest height, 7, is defined by: 7 =

<

The probability distribution function for 7 is:

Pn) =¥ (ﬂ) —VI—eEe 2y (\/1_——6277)

€ €

and the pdf for 7 is:

02 -
/ / c:']-O .
4
A i L 1 2 : ~ e

-2 -1 0 | 2L 3 t”
FigureZJ5 Probability density function of 7Z for various
values of the band width €.

Typically, € = 0.6.

For engineering purposes we are interested in large seas (n >> 1). This
corresponds to the tail of the pdf for n. In this region:

p(n) =v1-ene P()=1-vVi-e&e
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Average Amplitude of the 1/n’th Highest waves

Call the smallest normalized wave amplitude in the 1/n’th highest Waves

M/n- 1
= =1-P(mm
" (771/ )

Example: n = 10.

1 - (probability that a wave amplitude is less than the smallest of the 10%
largest waves) is 1/10.

This is because the probability that a (random) wave is smaller than 10%
is 90%.

For n >> 1, use the approximate P.

1

— =+v1—€?exp
n

1 2
"énl/n]

M/n = \/2 In(nv1 — €?)

Amongst the 1/n’th highest waves, the conditional pdf is:

Prsmy. (M) = np(n) =nV1 — n exp(—=n°/2), M <N < o0

The expectation of these amplitudes is the average of the 1/n’th highest

waves. .
Tjn = nV1 — €2 ne " 2dn
™M/n

Let n' = v/1 — €2 n. Then, n' is the number of zero up-crossings in a record
with n crests. The result of the integration is:

R EC N e
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Extreme Waves
Consider n non-dimensional random wave Amplitudes. Each has same pdf.
What are the probabilities of the largest waves in the set?

Aproach

Order the waves from smallest to largest.

¢1 is the smallest and ¢, is the largest wave amplitude. Now, each of the
¢’s has a different pdf.

We want to find the pdf for ¢,.

Probability that ¢, is less than a particular value ¢, is equal to the prob-
ability that all the waves are smaller than ¢,,_.

Py, (¢n,) = [Fy(¢n,]”

The amplitude that has a probability, a, of being exceeded by ¢, is called
aPn.-

Py (atn) = [Pyladn)]" =1 —a

Meaning of the Nomenclature

Suppose a = 0.01. Then the amplitude whose probability of being
exceeded by ¢, is 0.01 is named ¢ 91¢,.

The probability that ¢, is less than (3¢, is 0.99.

Py(atn) = (1~ a‘)l/n

€

AL (”“—2

n €

v <&> — \/r:?exp

a¢n> =(1-a)/m
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Since we are interested large waves, we can use the expressions for the tails
of the probability functions:

Pn)=1—-+v1-¢€ e /2

Then, 1—+v1—¢€?exp

1
5 a?bgz} =(1-a)/r

| i—e
Solve for a¢n . a¢n = \;an (1 _ (1 _ OOl/n)

Note: The value of n for a given period of time T" can be obtained from:

1 My
fc_%\ —TT—L;
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Dynamics of Horizontal Shallow Sag Cables in Water

\ | y )

Static Solution

H is the horizontal component of the Tension.
w is the weight in water/unit length.

T is the tension.

L is the static length.

H w H w
y = —cosh -z ” coshHa:
For T'> wL
T, o
y="" 1+21;,x2+... -2 T=T,~H
@“ww
de T,
Py w .
d_xz- = 7_’ =« static curvature = «
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Dynamics

a

I

2
vertical mechanical force/unit length = (To + T) (a + ﬁ)

T

q is the displacement normal to the cable towards the inside of the static
curvature.

2
dynamic vertical mechanical force/unit length = (TO + T) (a + %) —Toa
: : : dq |dq
hydrodynamic vertical force/unit length = —bd—t E\

where: b = %pCdD, p is the density of water, Cy is the drag coefficient and
D is the diameter of the cable.

Equation of Motion

2

0%q . &g dq |dg
— = (T, +T — -2 =T,
m—o— = (T, + )(a+ 32) bt tl e

Strain Compatibility
. EA
Tension increase due to ¢ = increased length X -
F is the elastic modulus and A is the cross sectional Area of the cable.
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where: p, is the sum of the tangential extensions of the ends of the cable.
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